Synlett 2017; 28(16): 2143-2146
DOI: 10.1055/s-0036-1589066
letter
© Georg Thieme Verlag Stuttgart · New York

Silver(I)-Catalyzed Deprenylation of Allylsulfonamide Derivatives

Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan   Email: [email protected]
,
Shisen Hira
Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan   Email: [email protected]
,
Chisato Mukai
Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 13 May 2017

Accepted after revision: 30 May 2017

Publication Date:
11 July 2017 (online)


Abstract

The silver(I)-catalyzed deprenylation of sulfonamide bearing prenyl functional groups on the nitrogen atom has been developed. In this reaction, the prenyl moiety was selectively eliminated without allyl or benzyl cleavage on the nitrogen atom. In addition, geranyl was also applicable for this elimination reaction. Furthermore, sulfonamide possessing two prenyl groups underwent a double deprenylation to form the corresponding deprenylated sulfonamide. Thus, a novel reactivity between the silver cation and double bond was observed.

Supporting Information

 
  • References and Notes

  • 1 Manalang MG. Bundy HF. J. Chem. Educ. 1989; 66: 609
  • 2 Patani GA. LaVoie EJ. Chem. Rev. 1996; 96: 3147
  • 3 Graham SL. Scholz TH. J. Org. Chem. 1991; 56: 4260
  • 4 Wan Y. Wu X. Kannan MA. Alterman M. Tetrahedron Lett. 2003; 44: 4523
  • 5 Mahalingam AK. Wu X. Wan Y. Alterman M. Synth. Commun. 2005; 35: 417
  • 6 Burlingham BT. Widlanski TS. J. Am. Chem. Soc. 2001; 123: 2937
  • 7 Johnson DC. II. Widlanski TS. Tetrahedron Lett. 2004; 45: 8483
  • 8 Poss MA. Reid JA. Tetrahedron Lett. 1992; 33: 7291
  • 9 Morris J. Wishka DG. J. Org. Chem. 1991; 56: 3549
  • 10 Hill B. Liu Y. Taylor SD. Org. Lett. 2004; 6: 4285
  • 11 Videnov G. Aleksiev B. Stoev M. Paipanova T. Jung G. Liebigs Ann. Chem. 1993; 941
  • 12 Alonso E. Ramón DJ. Yus M. Tetrahedron 1997; 53: 14355
  • 13 Taniguchi T. Ogasawara K. Tetrahedron Lett. 1998; 39: 4679
  • 14 Nikitjuka A. Nekrasova A. Jirgensons A. Synlett 2015; 26: 183
  • 15 Fang G. Bi X. Chem. Soc. Rev. 2015; 44: 8124
  • 16 Chen Z. Wen Y. Ding H. Luo G. Ye M. Liu L. Xue J. Tetrahedron Lett. 2017; 58: 13
  • 17 Heinrich CF. Fabre I. Miesch L. Angew. Chem. Int. Ed. 2016; 55: 5170
  • 18 Shen T. Wang T. Qin C. Jiao N. Angew. Chem. Int. Ed. 2013; 52: 6677
  • 19 Kaneti J. de Smet LC. P. M. Boom R. Zulihof H. Sudhölter EJ. R. J. Phys. Chem. A 2002; 106: 11197
  • 20 Adlof R. Lamm T. J. Chromatogr. A. 1998; 799: 329
  • 21 Ruan B. Gerst N. Emmons GT. Shey J. Schroepfer Jr GJ. J. Lipid. Res. 1997; 38: 2615
  • 22 Christie WW. Breckenridge GH. M. J. Chromatogr. A. 1989; 469: 261
  • 23 Kelemu SW. Steel PJ. Polyhedron 2014; 71: 99
  • 24 Canty AJ. Inorg. Chim. Acta 1994; 220: 99
    • 25a Li Y. Jiang X. Zhao C. Fu X. Xu X. Tang P. ACS Catal. 2017; 7: 1606
    • 25b Dolan NS. Scamp RJ. Yang T. Berry JF. Schomaker JM. J. Am. Chem. Soc. 2016; 138: 14658
    • 25c Rigoli JW. Weatherly CD. Alderson JM. Vo BT. Schomaker JM. J. Am. Chem. Soc. 2013; 135: 17238
    • 25d Maestre L. Sameera WM. C. Diaz-Requejo MM. Masera F. Prez PJ. J. Am. Chem. Soc. 2013; 135: 1338
    • 25e Carter EA. Goddard III WA. J. Catal. 1988; 112: 80
    • 26a Lv J. Zhong X. Luo S. Chem. Eur. J. 2014; 20: 8293
    • 26b Sokol JG. Korapala CS. White PS. Becker JJ. Gagné MR. Angew. Chem. Int. Ed. 2011; 50: 5658
    • 26c Harn C. Chem. Eur. J. 2004; 10: 5888
    • 26d Kerber WD. Koh JH. Gagné MR. Org. Lett. 2004; 6: 3013
    • 26e Liu C. Han X. Wang X. Widenhoefer RA. J. Am. Chem. Soc. 2004; 126: 3700
    • 26f Barrero AF. Oltra JE. Alvarez M. Tetrahedron Lett. 1998; 39: 1401
    • 26g Trost BM. Fortunak JM. D. Organometallics 1982; 1: 7
    • 26h Oppolzer W. Snieckus V. Angew. Chem., Int. Ed. Engl. 1978; 17: 476
  • 27 Inagaki F. Matsumoto M. Hira S. Mukai C. Chem. Pharm. Bull.in press
  • 28 General Procedure for Deprenylation To a solution of substrate (0.10 mmol) in DCE (0.5 mL) was added a solution of AgSbF6 (0.005 mmol) in DCE (0.5 mL) under an atmosphere of N2. After stirring for 2 min at 140 °C under microwave irradiation, the solvent was evaporated off. The residue was chromatographed with hexane/EtOAc to afford the deprenylated sulfonamide.
  • 29 Analytical Data for 6a 30 Compound 6a was a yellow solid: IR 3281, 1323, 1158, 1093, 814, 666, 550 cm–1. 1H NMR (600 MHz, CDCl3): δ = 7.76 (d, 2 H, J = 8.1 Hz), 7.31 (d, 2 H, J = 8.1 Hz), 5.76–5.69 (m, 1 H), 5.19–5.15 (m, 1 H), 5.11–5.09 (m, 1 H), 4.53 (br t, 1 H, J = 5.8 Hz), 3.60–3.58 (m, 2 H), 2.43 (s, 3 H). 13C NMR (151 MHz, CDCl3): δ = 143.5, 136.9, 132.9, 129.7, 127.1, 117.7, 45.8, 21.5.
  • 30 Wilden JD. Geldeard L. Lee CC. Judd DB. Caddick S. Chem. Comuun. 2007; 1074