Synthesis 2017; 49(22): 5017-5024
DOI: 10.1055/s-0036-1589073
paper
© Georg Thieme Verlag Stuttgart · New York

K2S2O8-Activated Friedel–Crafts Type Alkylation of Indoles with α-Amido Sulfones

Xiaoyan Wu, Lu Xue, Shilong Luo, Shiqi Jia, Jun Ao, Wenling Qin*
  • Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, No.55 Daxuecheng, South Rd., Shapingba, Chongqing 401331, P. R. of China   Email: wenling.qin@cqu.edu.cn
This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. 0903005203479), NSFC (21402016).
Further Information

Publication History

Received: 20 April 2017

Accepted after revision: 14 June 2017

Publication Date:
25 July 2017 (eFirst)

Abstract

A K2S2O8-activated regioselective alkylation of α-amido sulfones at the C-3 position of indoles is reported. The protocol developed herein provides an alternative new strategy to the previous approach by using Lewis acid, clay, and resin as catalyst for this Friedel–Crafts type alkylation of indoles with α-amido sulfones. The formed product bears a versatile transformable sulfone group and an amino group. The reaction condition is tolerant to a wide range of substrates, including a series of indoles with electron-withdrawing and electron-donating groups at different positions. Moreover, a variety of α-substituted phenylamido sulfones and some α-aliphatic amido sulfones also give the desired products in modest yield. Furthermore, a preliminary mechanism study was performed and the plausible reaction mechanism is discussed.

 
  • References

    • 1a Shaveta Singh A. Kaur M. Sharma S. Bhatti R. Singh P. Eur. J. Med. Chem. 2014; 77: 185
    • 1b Faulkner DJ. Nat. Prod. Rep. 2002; 19: 1
    • 1c Bosch J. Bennasar M.-L. Synlett 1995; 587
    • 1d Chen F.-E. Huang J. Chem. Rev. 2005; 105: 4671
    • 2a Wu L. Xie C. Mei H. Soloshonok VA. Han J. Pan Y. J. Org. Chem. 2014; 79: 7677
    • 2b Lin J.-H. Xiao J.-C. Eur. J. Org. Chem. 2011; 4536
    • 2c Terrasson V. de Figueiredo RM. Campagne JM. Eur. J. Org. Chem. 2010; 2635
    • 2d Peng J. Du D.-M. Eur. J. Org. Chem. 2012; 4042
    • 2e Shi Z.-H. Sheng H. Yang K.-F. Jiang J.-X. Lai G.-Q. Lu Y. Xu L.-W. Eur. J. Org. Chem. 2011; 66
    • 2f Tang H.-Y. Lu A.-D. Zhou Z.-H. Zhao G.-F. He L.-N. Tang C.-C. Eur. J. Org. Chem. 2008; 1406
    • 2g Yu X. Lu A. Wang Y. Wu G. Song H. Zhou Z. Tang C. Eur. J. Org. Chem. 2011; 892
    • 2h Jia Y.-X. Xie J.-H. Duan H.-F. Wang L.-X. Zhou Q.-L. Org. Lett. 2006; 8: 1621
    • 2i McKeon SC. Müller-Bunz H. Guiry PJ. Eur. J. Org. Chem. 2009; 4833
    • 2j Chen L.-Y. He H. Chan W.-H. Lee AW. M. J. Org. Chem. 2011; 76: 7141
    • 2k Bartoli G. Bosco M. Carlone A. Pesciaioli F. Sambri L. Melchiorre P. Org. Lett. 2007; 9: 1403
    • 2l Fleming EM. McCabe T. Connon SJ. Tetrahedron Lett. 2006; 47: 7037
    • 2m Zheng C. Sheng Y.-F. Li Y.-X. You S.-L. Tetrahedron 2010; 66: 2875
    • 3a Somei M. Yamada F. Nat. Prod. Rep. 2004; 21: 278
    • 3b O’Connor SE. Maresh JJ. Nat. Prod. Rep. 2006; 23: 532
    • 4a Zuo Z. Zhang S. Wang R. He W. Wu S. Xie X. Qin D. Jing L. Synthesis 2013; 45: 2832
    • 4b Wang R. Jing L. Qin D. Tetrahedron Lett. 2015; 56: 2867
    • 4c Cao L.-L. Li X.-N. Meng F.-Y. Jiang G.-F. Tetrahedron Lett. 2012; 53: 3873
    • 4d Jing L. Wei J. Zhou L. Huang Z. Li Z. Wu D. Xiang H. Zhou X. Chem. Eur. J. 2010; 16: 10955
    • 4e Chen P. Lu S.-m. Guo W. Liu Y. Li C. Chem. Commun. 2016; 52: 96
    • 4f Ballini R. Palmieri A. Petrini M. Torregiani E. Org. Lett. 2006; 8: 4093
    • 4g Li Y. Shi F.-Q. He Q.-L. You S.-L. Org. Lett. 2009; 11: 3182
    • 4h Shaikh RR. Mazzanti A. Petrini M. Bartoli G. Melchiorre P. Angew. Chem. Int. Ed. 2008; 47: 8707
    • 4i Huang W. Yang J. Li X. Yuan L. Ma Y. Zhou Q. Liang D. Phosphorus, Sulfur Silicon Relat. Elem. 2016; 191: 772
  • 5 Thirupathi P. Kim SS. J. Org. Chem. 2009; 74: 7755
  • 6 Thirupathi P. Neupane LN. Lee K.-H. Tetrahedron 2011; 67: 7301
  • 7 Kuhakarn C. Tangdenpaisal K. Kongsaeree P. Prabpai S. Tuchinda P. Pohmakotr M. Reutrakul V. Tetrahedron Lett. 2007; 48: 2467
  • 8 Thirupathi P. Kim SS. Eur. J. Org. Chem. 2010; 1798
  • 9 Ballini R. Palmieri A. Petrini M. Torregiani E. Org. Lett. 2006; 8: 4093
  • 10 Kadam ST. Thirupathi P. Kim SS. Tetrahedron 2009; 65: 10383
  • 11 Blay G. Girón RM. Montesinos-Magraner M. Pedro JR. Eur. J. Org. Chem. 2013; 3885
    • 12a Zhang H. Bao X. Song Y. Qu J. Wang B. Tetrahedron 2015; 71: 8885
    • 12b Chawla R. Singh AK. Yadav LD. S. Eur. J. Org. Chem. 2014; 2032
    • 12c Rao H. Wang P. Wang J. Li Z. Sun X. Cao S. RSC Adv. 2014; 4: 49165
    • 12d Maeda Y. Koyabu M. Nishimura T. Uemura S. J. Org. Chem. 2004; 69: 7688
    • 12e Prasad CD. Kumar S. Sattar M. Adhikary A. Kumar S. Org. Biomol. Chem. 2013; 11: 8036
    • 12f Ge W. Wei Y. Green Chem. 2012; 14: 2066
    • 12g Yang F.-L. Tian S.-K. Angew. Chem. Int. Ed. 2013; 52: 4929
    • 13a Kianmehr E. Pakbaznia A. Faghih N. Foroumadi A. Tetrahedron 2017; 73: 1407
    • 13b Yi F. Su J. Zhang S. Yi W. Zhang L. Eur. J. Org. Chem. 2015; 7360
    • 13c He X. Hu S. Liu K. Guo Y. Xu J. Shao S. Org. Lett. 2006; 8: 333