Synthesis 2018; 50(01): 146-154
DOI: 10.1055/s-0036-1589100
paper
© Georg Thieme Verlag Stuttgart · New York

Nickel-Catalyzed Electrochemical Reductive Homocouplings of Aryl and Heteroaryl Halides: A Useful Route to Symmetrical Biaryls

Rima Rahil
,
Stéphane Sengmany*
,
Erwan Le Gall
,
Eric Léonel*
Further Information

Publication History

Received: 13 June 2017

Accepted after revision: 02 August 2017

Publication Date:
12 September 2017 (eFirst)

Abstract

Due to their widespread presence in functional materials and pharmaceuticals, biaryls are of fundamental importance in organic chemistry. Methods for the synthesis of symmetrical biaryls generally involve both metallic reduction and transition-metal catalysis. In this work, we show that electroreduction can also constitute a very relevant way to achieve the nickel-catalyzed reductive synthesis of symmetrical biaryl compounds. Therefore, it is demonstrated that both aryl and heteroaryl halides undergo reductive coupling to furnish the corresponding symmetrical biaryls in fair to excellent yields. Reactions are performed under very mild conditions thus ensuring important functional group tolerance.

Supporting Information

 
  • References

    • 1a Meier H. Angew. Chem. Int. Ed. 2005; 44: 2482
    • 1b Li X.-C. Sirringhaus H. Garnier F. Holmes AB. Moratti SC. Feeder N. Clegg W. Teat SJ. Friend RH. J. Am. Chem. Soc. 1998; 120: 2206
    • 1c Zhu SS. Swager TM. Adv. Mater. 1996; 8: 497
    • 2a Hsiao C.-J. Hsiao G. Chen W.-L. Wang S.-W. Chiang C.-P. Liu L.-Y. Guh J.-H. Lee T.-H. Chung C.-L. J. Nat. Prod. 2014; 77: 758
    • 2b Boyd MR. Hallock YF. Cardellina JH. Manfredi KP. Blunt JW. McMahon JB. Buckheit RW. Bringmann G. Schaeffer M. J. Med. Chem. 1994; 37: 1740
    • 2c Qin T. Porco JA. Angew. Chem. Int. Ed. 2014; 53: 3107
    • 2d Croom KF. Keating GM. Am. J. Cardiovasc. Drugs 2004; 4: 395
    • 2e Vrettou M. Gray AA. Brewer AR. E. Barrett AG. M. Tetrahedron 2007; 63: 1487
    • 2f Degnan AP. Meyers AI. J. Am. Chem. Soc. 1999; 121: 2762
    • 2g Dai L. Ji H. Kong X.-w. Zhang Y.-h. Acta Pharmacol. Sin. 2010; 31: 27
    • 3a Bringmann G. Gulder T. Gulder TA. M. Breuning M. Chem. Rev. 2011; 111: 563
    • 3b Pu L. Chem. Rev. 1998; 98: 2405

      For the seminal contribution, see:
    • 4a Ullmann F. Bielecki J. Chem. Ber. 1901; 34: 2174

    • For reviews, see:
    • 4b Lin H. Sun D. Org. Prep. Proced. Int. 2013; 45: 341
    • 4c Fanta PE. Synthesis 1974; 9

    • For some other examples, see:
    • 4d Sessler JL. Hoehner MC. Synlett 1994; 211
    • 4e Zhang S. Zhang D. Liebeskind LS. J. Org. Chem. 1997; 62: 2312
    • 4f Nelson TD. Meyers AI. Tetrahedron Lett. 1994; 35: 3259
    • 5a Hassan J. Sévignon M. Gozzi C. Schulz E. Lemaire M. Chem. Rev. 2002; 102: 1359
    • 5b Bringmann G. Walter R. Weirich R. Angew. Chem. Int. Ed. 1990; 29: 977
    • 5c Diederich F. Stang PJ. Metal Catalysed Cross-Coupling Reactions . Wiley-VCH; Weinheim: 1998
    • 5d Sainsbury M. Tetrahedron 1980; 36: 3327
    • 6a Kirai N. Yamamoto Y. Eur. J. Org. Chem. 2009; 1864
    • 6b Cheng GJ. Luo MM. Eur. J. Org. Chem. 2011; 2519
    • 6c Carrettin S. Guzman J. Corma A. Angew. Chem. Int. Ed. 2005; 44: 2242
    • 6d Puthiaraj P. Suresh P. Pitchumani K. Green Chem. 2014; 16: 2865
    • 6e Li J. Jin L. Liu C. Lei A. Chem. Commun. 2013; 49: 9615
    • 6f Nagano T. Hayashi T. Org. Lett. 2005; 7: 491
    • 6g Kiefer G. Jeanbourquin L. Severin K. Angew. Chem. Int. Ed. 2013; 52: 6302
    • 6h Bourne-Branchu Y. Moncomble A. Corpet M. Danoun G. Gosmini C. Synthesis 2016; 48: 3352
    • 7a Zeng MF. Du YJ. Shao LJ. Qi CZ. Zhang XM. J. Org. Chem. 2010; 75: 2556
    • 7b Nising CF. Schmid UK. Nieger M. Bräse S. J. Org. Chem. 2004; 69: 6830
    • 7c Hennings DD. Iwama T. Rawal VH. Org. Lett. 1999; 1: 1205
    • 7d Seganish WM. Mowery ME. Riggleman S. DeShong P. Tetrahedron 2005; 61: 2117
    • 8a Semmelhack MF. Helquist PM. Jones LD. J. Am. Chem. Soc. 1971; 93: 5908
    • 8b Colon I. Kelsey DR. J. Org. Chem. 1986; 51: 2627
    • 8c Hashim J. Kappe CO. Adv. Synth. Catal. 2007; 349: 2353
    • 9a Moncomble A. Le Floch P. Gosmini C. Chem. Eur. J. 2009; 15: 4770
    • 9b Mayer M. Czaplik WM. Jacobi von Wangelin A. Synlett 2009; 2919
    • 10a Maddaluno J. Durandetti M. Synlett 2015; 26: 2385
    • 10b Cherney AH. Reisman SE. J. Am. Chem. Soc. 2014; 136: 14365
    • 10c Chen C. Synlett 2000; 1491
    • 11a Yamamoto T. Appl. Organomet. Chem. 2014; 28: 598
    • 11b Yuan Y. Bian Y. Appl. Organomet. Chem. 2008; 22: 15
    • 12a McGee BJ. Sherwood LJ. Greer ML. Blackstock SC. Org. Lett. 2000; 2: 1181
    • 12b Tiecco M. Testaferri L. Tingoli M. Chainelli D. Montanucci M. Synthesis 1984; 736
    • 12c Zembayashi M. Tamao K. Yoshida J. Kumada M. Tetrahedron Lett. 1977; 18: 4089
    • 12d Iyoda M. Otsuka H. Sato K. Nisato N. Oda M. Bull. Chem. Soc. Jpn. 1990; 63: 80
    • 12e Jutand A. Mosleh A. Synlett 1993; 568
    • 13a Nedelec JY. Périchon J. Troupel M. Top. Curr. Chem. 1997; 185: 141
    • 13b Jutand A. Négri S. Mosleh A. J. Chem. Soc., Chem. Commun. 1992; 1729
    • 13c Courtois V. Barhdadi R. Condon S. Troupel M. Tetrahedron Lett. 1999; 40: 5993
    • 13d Rollin Y. Troupel M. Tuck DG. Périchon J. J. Organomet. Chem. 1986; 303: 131
    • 13e de França KW. R. Oliveira JL. Florêncio T. da Silva AP. Navarro M. Léonel E. Nédélec J.-Y. J. Org. Chem. 2005; 70: 10778
    • 13f Oliveira JL. Le Gall E. Sengmany S. Léonel E. Dubot P. Cénédèse P. Navarro M. Electrochim. Acta 2015; 173: 465
    • 14a Sengmany S. Leonel E. Polissaint F. Nedelec J.-Y. Pipelier M. Thobie-Gautier C. Dubreuil D. J. Org. Chem. 2007; 72: 5631
    • 14b Sengmany S. Le Gall E. Leonel E. Molecules 2011; 16: 5550
    • 14c Sengmany S. Vitu-Thiebaud A. Le Gall E. Condon S. Leonel E. Thobie-Gautier C. Pipelier M. Lebreton J. Dubreuil D. J. Org. Chem. 2013; 78: 370
    • 14d Sengmany S. Vasseur S. Lajnef A. Le Gall E. Léonel E. Eur. J. Org. Chem. 2016; 4865
    • 15a Tsuji Y. Kajita S. Isobe S. Funato M. J. Org. Chem. 1993; 58: 3607
    • 15b Fujita M. Oka H. Ogura K. Tetrahedron Lett. 1995; 36: 5247
    • 15c McCann LC. Organ MG. Angew. Chem. Int. Ed. 2014; 53: 4386
  • 16 The use of polar solvents is requisite to ensure sufficient electric conductivity of the medium.
  • 17 Schlosser M. Michel D. Tetrahedron 1996; 52: 99
    • 18a Amatore C. Jutand A. Mottier L. J. Electroanal. Chem. 1991; 306: 125
    • 18b Durandetti M. Devaud M. Périchon J. New J. Chem. 1996; 20: 659
    • 18c Jiang F. Ren Q. J. Organomet. Chem. 2014; 757: 72
  • 19 Troupel M. Rollin Y. Sock O. Meyer G. Périchon J. New J. Chem. 1986; 10: 593
  • 20 Ma N. Zhu Z. Wu Y. Tetrahedron 2007; 63: 4625
  • 21 Leowanawat P. Zhang N. Resmerita A.-M. Rosen BM. Percec V. J. Org. Chem. 2011; 76: 9946
  • 22 Cahiez G. Chaboche C. Mahuteau-Betzer F. Ahr M. Org. Lett. 2005; 7: 1943
  • 23 Cepanec I. Litvic M. Udikovic J. Pogorelic I. Lovric M. Tetrahedron 2007; 63: 5614
  • 24 Baker W. Barton JW. McOmie JF. W. J. Chem. Soc. 1958; 2658
  • 25 Singh FV. Stefani HA. Synlett 2008; 3221
  • 26 Toummini D. Ouazzani F. Taillefer M. Org. Lett. 2013; 15: 4690
  • 27 Kauffmann T. Greving B. Kriegesmann R. Mitschker A. Woltermann A. Chem. Ber. 1978; 111: 1330
  • 28 Dubreuil D. Pipelier M. Pradère JP. Bakkali H. Thobie C. Léonel E. Nédélec J.-Y. Sengmany S. Delaunay T. Tabatchnik A. PCT Int. Appl. WO 2008012441 A2 20080131, 2008
  • 29 Rodríguez JG. de los Rios C. Lafuente A. Tetrahedron 2005; 61: 9042