Synlett 2017; 28(04): 461-466
DOI: 10.1055/s-0036-1589717
letter
© Georg Thieme Verlag Stuttgart · New York

Iodine/Hydrogen Peroxide Promoted Intramolecular Oxidative C–O Bond Formation in Ethanol at Room Temperature: A Green Approach to 1,3-Oxazines

Mohit L. Deb*
a   Department of Applied Sciences, GUIST, Gauhati University, Guwahati, 781014, Assam, India   Email: mohitdd.deb@gmail.com   Email: baruah.pranjal@gmail.com
,
Paran J. Borpatra
a   Department of Applied Sciences, GUIST, Gauhati University, Guwahati, 781014, Assam, India   Email: mohitdd.deb@gmail.com   Email: baruah.pranjal@gmail.com
,
Prakash J. Saikia
b   Analytical Chemistry Division CSIR-NEIST, Jorhat-785006, Assam, India
,
Pranjal K. Baruah*
a   Department of Applied Sciences, GUIST, Gauhati University, Guwahati, 781014, Assam, India   Email: mohitdd.deb@gmail.com   Email: baruah.pranjal@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 16 September 2016

Accepted after revision: 02 November 2016

Publication Date:
18 November 2016 (online)


Abstract

An I2/H2O2-promoted intramolecular C–O bond-formation reaction of a variety of 1-(aminoalkyl)-2-naphthols or 2-(aminoalkyl)phenols to give the corresponding 1,3-oxazines was developed. The reaction is simple, atom-economic, and proceeds smoothly at room temperature under metal-free conditions in ethanol as solvent.

Supporting Information

 
  • References and Notes

    • 1a Chylińska JB, Urbański T, Mordarski M. J. Med. Chem. 1963; 6: 484
    • 1b Benameur L, Bouaziz Z, Nebois P, Bartoli M.-H, Boitard M, Fillion H. Chem. Pharm. Bull. 1996; 44: 605
    • 2a Gómez Gómez P, Pérez Pabón H, Carvajal MA, Rincón JM. Rev. Colomb. Cienc. Quim.-Farm. 1985; 4 () 15
    • 2b Waisser K, Gregor K, Kubicová L, Klimešová V, Kuneš J, Macháček M, Kaustová J. Eur. J. Med. Chem. 2000; 35: 733
    • 3a Mathew BP, Kumar A, Sharma S, Shula PK, Nath M. Eur. J. Med. Chem. 2010; 45: 1502
    • 3b Petrlíková E, Waisser K, Divišová H, Husáková P, Vrabcová P, Kuneš J, Kolář K, Stolaříková J. Bioorg. Med. Chem. 2010; 18: 8178
    • 4a Bouaziz Z, Riondel J, Mey A, Berlion M, Villard J, Filliond H. Eur. J. Med. Chem. 1991; 26: 469
    • 4b Arthington-Skaggs BA, Motley M, Warnock DW, Morrison CJ. J. Clin. Microbiol. 2000; 38: 2254
    • 5a Pedersen OS, Pedersen EB. Synthesis 2000; 479
    • 5b Cocuzza AJ, Chidester DR, Cordova BC, Jeffrey S, Parsons RL, Bacheler LT, Viitanen SE, Trainor GL, Ko SS. Bioorg. Med. Chem. Lett. 2001; 11: 1177
    • 6a Johns BA, Weatherhead JG. WO 2010011812, 2010
    • 6b Olianas MC, Onali P. Life Sci. 1999; 65: 2233
    • 6c Böhme TM, Augelli-Szafran CE, Hussein H, Pugsley T, Serpa K, Schwarz RD. J. Med. Chem. 2002; 45: 3094
    • 6d Arai AC, Kessler M, Rogers G, Lynch G. Mol. Pharmacol. 2000; 58: 802
    • 7a Burke WJ. J. Am. Chem. Soc. 1949; 71: 609
    • 7b Burke WJ, Kolbezen MJ, Stephens CW. J. Am. Chem. Soc. 1952; 74: 3601
    • 7c Burke WJ, Murdock KC, Ec G. J. Am. Chem. Soc. 1954; 76: 1677
    • 7d Burke WJ, Reynolds RJ. J. Am. Chem. Soc. 1954; 76: 1291
    • 7e Burke WJ, Hammer CR, Weatherbee C. J. Org. Chem. 1961; 26: 4403
    • 7f Fields DL, Miller JB, Reynolds DD. J. Org. Chem. 1962; 27: 2749
    • 7g Katritzky AR, Xu Y.-J, Jain R. J. Org. Chem. 2002; 67: 8234
    • 7h Burke WJ, Stephens CW. J. Am. Chem. Soc. 1952; 74: 1518
    • 7i Mathew BP, Nath M. J. Heterocycl. Chem. 2009; 46: 1003
    • 7j Tang Z, Zhu Z, Xia Z, Liu H, Chen J, Xia W, Ou X. Molecules 2012; 17: 8174
    • 7k Chen CK, Hortmann AG, Marzabadi MR. J. Am. Chem. Soc. 1988; 110: 4829
    • 7l Kienzle F. Tetrahedron Lett. 1983; 24: 2213
    • 7m Okimoto M, Ohashi K, Yamamori H, Nishikawa S, Hoshi M, Yoshida T. Synthesis 2012; 44: 1315
    • 7n Mathis CL, Gist BM, Frederickson CK, Midkiff KM, Marvin CC. Tetrahedron Lett. 2013; 54: 2101
    • 7o Xuan J, Feng Z.-J, Duan S.-W, Xiao W.-J. RSC Adv. 2012; 2: 4065
    • 7p Pandey G, Kumaraswamy G, Reddy PY. Tetrahedron 1992; 48: 8295
    • 8a Augelli-Szafran CE, Jaen JC, Moreland DW, Nelson CB, Penvose-Yi JR, Schwarz RD. Bioorg. Med. Chem. Lett. 1998; 8: 1991
    • 8b Szatmári I, Fülöp F. Tetrahedron Lett. 2011; 52: 4440
    • 8c Szatmári I, Heydenreich M, Koch A, Fülöp F, Kleinpeter E. Tetrahedron 2013; 69: 7455
    • 8d Cohen N, Blount JF, Lopresti RJ, Trullinger DP. J. Org. Chem. 1979; 44: 4005
  • 9 Richers MT, Breugst M, Platonova AY, Ullrich A, Dieckmann A, Houk KN, Seidel D. J. Am. Chem. Soc. 2014; 136: 6123
    • 10a Deb ML, Dey SS, Bento I, Barros MT, Maycock CD. Angew. Chem. Int. Ed. 2013; 52: 9791
    • 10b Mahato S, Haldar S, Jana CK. Chem. Commun. 2014; 50: 332
    • 10c Shahrisa A, Teimuri-Mofrad R, Gholamhosseini-Nazari M. Synlett 2015; 26: 1031
    • 11a Li Z, Li C.-J. J. Am. Chem. Soc. 2005; 127: 3672
    • 11b Baslé O, Borduas N, Dubois P, Chapuzet JM, Chan T.-H, Lessard J, Li C.-J. Chem. Eur. J. 2010; 16: 8162
    • 11c Li Z, Li C.-J. J. Am. Chem. Soc. 2005; 127: 6968
    • 11d Basle O, Li C.-J. Org. Lett. 2008; 10: 3661
    • 11e Zhang G, Zhang Y, Wang R. Angew. Chem. Int. Ed. 2011; 50: 10429
    • 11f Boess E, Sureshkumar D, Sud A, Wirtz C, Farès C, Klussmann M. J. Am. Chem. Soc. 2011; 133: 8106
    • 11g Basle O, Li C.-J. Chem. Commun. 2009; 4124
    • 12a Murahashi S.-I, Nakae T, Terai H, Komiya N. J. Am. Chem. Soc. 2008; 130: 11005
    • 12b Murahashi S.-I, Zhang D. Chem. Soc. Rev. 2008; 37: 1490
    • 12c Condie AG, González-Gómez JC, Stephenson CR. J. J. Am. Chem. Soc. 2010; 132: 1464
    • 12d Rueping M, Vila C, Koenigs RM, Poscharny K, Fabry DC. Chem. Commun. 2011; 47: 2360
    • 12e Freeman DB, Furst L, Condie AG, Stephenson CR. J. Org. Lett. 2012; 14: 94
    • 13a Liu W, Liu J, Ogawa D, Nishihara Y, Guo X, Li Z. Org. Lett. 2011; 13: 6272
    • 13b Han W, Ofial AR. Chem. Commun. 2009; 5024
    • 13c Ghobrial M, Harhammer K, Mihovilovic MD, Schnürch M. Chem. Commun. 2010; 46: 8836
    • 13d Liu P, Zhou C.-Y, Xiang S, Che C.-M. Chem. Commun. 2010; 46: 2739
    • 13e Volla CM. R, Vogel P. Org. Lett. 2009; 11: 1701
    • 13f Han W, Mayer P, Ofial AR. Adv. Synth. Catal. 2010; 352: 1667
  • 14 Catino AJ, Nichols JM, Nettles BJ, Doyle MP. J. Am. Chem. Soc. 2006; 128: 5648
    • 15a Zhu C, Xia J.-B, Chen C. Tetrahedron Lett. 2014; 55: 232
    • 15b Singhal S, Jain SL, Sain B. Chem. Commun. 2009; 2371
    • 15c Sud A, Sureshkumar D, Klussmann M. Chem. Commun. 2009; 3169
    • 15d Alagiri K, Kumara GS. R, Prabhu KR. Chem. Commun. 2011; 47: 11787
  • 16 Xie J, Li H, Zhou J, Cheng Y, Zhu C. Angew. Chem. Int. Ed. 2012; 51: 1252
    • 17a Shu X.-Z, Yang Y.-F, Xia X.-F, Ji K.-G, Liu X.-Y, Liang Y.-M. Org. Biomol. Chem. 2010; 8: 4077
    • 17b Lee M, Sanford MS. J. Am. Chem. Soc. 2015; 137: 12796
    • 18a Yan Y, Xu Y, Niu B, Xie H, Liu Y. J. Org. Chem. 2015; 80: 5581
    • 18b Dhineshkumar J, Lamani M, Alagiri K, Prabhu KR. Org. Lett. 2013; 15: 1092
    • 18c Andivelu I, Gandhesiri S. J. Org. Chem. 2014; 79: 4984
    • 18d Deb ML, Pegu CD, Deka B, Dutta P, Kotmale AS, Baruah PK. Eur. J. Org. Chem. 2016; 3441
    • 19a Li L.-T, Huang J, Li H.-Y, Wen L.-J, Wang P, Wang B. Chem. Commun. 2012; 48: 5187
    • 19b Froehr T, Sindlinger CP, Kloeckner U, Finkbeiner P, Nachtsheim BJ. Org. Lett. 2011; 13: 3754
    • 19c Kloeckner U, Weckenmann NM, Nachtsheim BJ. Synlett 2012; 97
    • 20a Lao Z.-Q, Zhong W.-H, Lou Q.-H, Li Z.-J, Meng X.-B. Org. Biomol. Chem. 2012; 10: 7869
    • 20b Zhao J, Li P, Xia C, Li F. Chem. Commun. 2014; 50: 4751
    • 20c Li L.-T, Li H.-Y, Xing L.-J, Wen L.-J, Wang P, Wang B. Org. Biomol. Chem. 2012; 10: 9519
    • 21a Lui L, Du L, Zhang-Negrerie D, Du Y. RSC Adv. 2015; 5: 29774
    • 21b Lamani M, Prabhu KR. Chem. Eur. J. 2012; 18: 14638
    • 21c Yan Y, Zhang Y, Zha Z, Wang Z. Org. Lett. 2013; 15: 2274
    • 22a Shu X.-Z, Xia X.-F, Yang Y.-F, Ji K.-G, Liu X.-Y, Liang Y.-M. J. Org. Chem. 2009; 74: 7464
    • 22b Zhang N, Cheng R, Zhang-Negrerie D, Du Y, Zhao K. J. Org. Chem. 2014; 79: 10581
    • 22c Waghmode NA, Kalbandhe AH, Thorat PB, Karade NN. Tetrahedron Lett. 2016; 57: 680
  • 23 Shang X.-J, Liu Z.-Q. Tetrahedron Lett. 2015; 56: 482
  • 24 Oxazines 2a–v; General Procedure I2 (10 mol%, 25 mg) and 35% aq H2O2 (194 mg, 2 equiv) were added to a solution of the appropriate naphthol or phenol 1 (1.0 mmol) in EtOH (3.0 mL), and the mixture was stirred at r.t. for the appropriate time (Figure 2). When the reaction was complete (TLC), the solvent was removed under reduced pressure, and the crude product was purified by column chromatography [silica gel (100–200 mesh), EtOAc–hexane]. 3-Isocyano-12-phenyl-7a,8,9,10-tetrahydro-12H-naphtho[1,2-e]pyrrolo[2,1-b][1,3]oxazine (2m) Brown solid; yield: 196 mg (60%); mp 155–157 °C. IR (KBr): 3081, 2931, 2212, 1622, 1591, 1461, 1344, 1231, 1092 cm–1. 1H NMR (500 MHz, CDCl3): δ = 8.12 (s, 1 H), 7.76 (d, J = 9.2 Hz, 1 H), 7.44–7.40 (m, 2 H), 7.31–7.24 (m, 3 H), 7.21–7.17 (m, 3 H), 5.43 (s, 1 H), 5.11 (m, 1 H), 3.39–3.35 (m, 1 H), 2.90–2.85 (m, 1 H), 2.16–1.98 (m, 4 H). 13C NMR (125 MHz, CDCl3): δ = 154.5, 142.4, 134.4, 134.2, 129.4, 128.5, 128.4, 127.6, 127.5, 127.2, 123.6, 120.7, 119.6, 110.6, 105.9, 87.1, 56.0, 50.4, 31.8, 20.8. HRMS (ESI): m/z [M + H]+ calcd for C22H19N2O: 327.1497; found: 327.1499. 3-Bromo-12,13-dihydro-7aH,15H-naphtho[1′,2′:5,6][1,3]oxazino[2,3-a]isoquinoline (2r) White solid; yield: 322 mg (88%); mp 188–190 °C. IR (KBr): 3056, 2933, 1620, 1589, 1318, 1241, 1090, 744 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.92 (d, J = 2.0 Hz, 1 H), 7.57–7.52 (m, 3 H), 7.46–7.45 (m, 1 H), 7.36–7.29 (m, 2 H), 7.23–7.22 (m, 1 H), 7.07 (d, J = 8.9 Hz, 1 H), 5.79 (s, 1 H), 4.77 (d, J = 16.6 Hz, 1 H), 4.24 (d, J = 16.6 Hz, 1 H), 3.43–3.38 (m, 1 H), 3.20–3.13 (m, 1 H), 2.96–2.89 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 151.9, 134.8, 132.7, 130.6, 130.1, 129.9, 129.7, 129.0, 128.8, 128.4, 127.2, 126.3, 122.9, 119.9, 117.1, 111.3, 86.9, 51.1, 45.1, 29.0. HRMS (ESI): m/z [M + H]+ calcd for C20H17BrNO: 366.0494; found: 366.0499 (79Br, 100%); 368.0495 (81Br, 100%). 7a,12,13,15-Tetrahydro-2H-chromeno[8′,7′:5,6][1,3]oxazino-[2,3-a]isoquinolin-2-one (2v) Gummy solid; yield 261 mg (85%). IR (CHCl3): 3081, 2916, 2841, 1719, 1621, 1548, 1394, 1233, 1146, 743 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.65 (d, J = 9.5 Hz, 1 H), 7.43 (d, J = 6.9 Hz, 1 H), 7.37–7.22 (m, 4 H), 6.76 (d, J = 8.5 Hz, 1 H), 6.26 (d, J = 9.3 Hz, 1 H), 5.90 (s, 1 H), 4.42 (s, 2 H), 3.09–3.03 (m, 4 H). 13C NMR (125 MHz, CDCl3): δ = 161.3, 157.4, 152.1, 144.1, 134.5, 131.7, 129.3, 128.7, 128.4, 126.8, 126.3, 113.8, 112.3, 111.9, 106.8, 88.6, 48.2, 44.3, 28.6. HRMS (ESI): m/z [M + H]+ calcd for C19H15NO3: 306.1130; found: 306.1137.
    • 25a Betti M. Org. Synth. Coll. Vol. I . Wiley; London: 1941. 2nd ed. 381
    • 25b Betti M. Gazz. Chim. Ital. 1900; 30: 301
    • 26a Lengyel I, Epstein IR, Kustin K. Inorg. Chem. 1993; 32: 5880
    • 26b Barnes I, Bedker KH, Starcke J. Chem. Phys. Lett. 1992; 196: 578
    • 26c Paquette J, Ford BL. Can. J. Chem. 1985; 63: 2444
    • 26d Ohta H, Motoyama T, Ura T, Ishii Y, Ogawa M. J. Org. Chem. 1989; 54: 1668
  • 27 Nobuta T, Tada N, Fujiya A, Kariya A, Miura T, Itoh A. Org. Lett. 2013; 15: 574 ; and references cited therein