Synthesis 2017; 49(22): 4996-5002
DOI: 10.1055/s-0036-1590821
paper
© Georg Thieme Verlag Stuttgart · New York

Triflic Anhydride Promoted Intramolecular Cyclization of N-Aryl Cinnamides: Access to Polysubstituted Quinolin-2(1H)-ones

Qian Zhang, Jingwen Yuan, Mangfei Yu, Rui Zhang*, Yongjiu Liang, Peng Huang, Dewen Dong*
  • Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. of China   Email: ariel@ciac.ac.cn   Email: dwdong@ciac.ac.cn
Financial support of this research by the National Natural Science Foundation of China (21502185, 21172211 and 21542006) is gratefully acknowledged.
Further Information

Publication History

Received: 24 April 2017

Accepted after revision: 05 June 2017

Publication Date:
02 August 2017 (eFirst)

Abstract

A facile and efficient synthesis of polysubstituted quinolin-2(1H)-ones is developed via intramolecular cyclization of readily available N-aryl cinnamides promoted by triflic anhydride in N,N-dimethyl trifluoroacetamide (DTA) under mild conditions.

Supporting Information

 
  • References

    • 1a Chung HS. Woo WS. J. Nat. Prod. 2001; 64: 1579
    • 1b Ito C. Itoigawa M. Furukawa A. Hirano T. Murata T. Kaneda N. Hisada Y. Okuda K. Furukawa H. J. Nat. Prod. 2004; 67: 1800
    • 1c Grabley S. Thiericke R. Drug Discovery from Nature . Springer-Verlag; Berlin; 1999: 124
    • 1d He J. Lion U. Sattler I. Gollmick FA. Grabley S. Cai J. Meiner M. Schaumann K. Dechert U. Krohn M. J. Nat. Prod. 2005; 6: 1397
    • 2a Cheng P. Zhang Q. Ma YB. Jiang ZY. Zhang XM. Zhang FX. Bioorg. Med. Chem. Lett. 2008; 18: 3787
    • 2b Guo LJ. Wei CX. Jia JH. Zhao LM. Quan ZS. Eur. J. Med. Chem. 2009; 44: 954
    • 2c Marzano C. Chilin A. Baccichetti F. Bettio F. Guiotto A. Miolo G. Bordin F. Eur. J. Med. Chem. 2004; 39: 411
    • 2d Sliskovic DR. Picard JA. Roark WH. Roth BD. Ferguson E. Krause BR. Newton RS. Sekerke C. Shaw MK. J. Med. Chem. 1991; 34: 367
    • 2e Patel M. McHugh RJ. Cordova BC. Klabe RM. Bacheler LT. Erickson-Viitanen S. Rodger JD. Bioorg. Med. Chem. Lett. 2011; 11: 1943
    • 3a Forbis RM. Rinehart KL. J. Am. Chem. Soc. 1973; 95: 5003
    • 3b Nadzan AM. Rinehart KL. Jr. Sokolski WT. J. Antibiot. 1977; 30: 523
    • 3c Beier N. Labitzke E. Mederski WW. K. R. Radunz H.-E. Rauschenbach-Ruess K. Schneider B. Heterocycles 1994; 39: 117
    • 3d Chen K. Kuo SC. Hsieh MC. Mauger A. Lin CM. Hamel E. Lee KH. J. Med. Chem. 1997; 40: 2266
    • 3e Huang LJ. Heieh MC. Teng CM. Lee KH. Kuo SC. Bioorg. Med. Chem. 1998; 6: 1657
    • 4a Familoni OB. Kaye PT. Klaas P. Chem. Commun. 1998; 2563
    • 4b Glasnov TN. Stadlbauer W. Kappe CO. J. Org. Chem. 2005; 70: 3864
    • 4c Bach T. Bergmann H. Grosch B. Harms K. J. Am. Chem. Soc. 2002; 124: 7982
    • 4d Kumabe R. Nishino H. Tetrahedron Lett. 2004; 45: 703
    • 4e Carrër A. Brion J.-D. Messaoudi S. Alami M. Adv. Synth. Catal. 2013; 355: 2044
    • 4f Wu Y.-L. Chuang C.-P. Lin P.-Y. Tetrahedron 2000; 56: 6029
    • 4g Battistuzzi G. Bernini R. Cacchi S. Salve ID. Fabrizi G. Adv. Synth. Catal. 2007; 349: 297
    • 5a Kulkarni BA. Ganesan A. Chem. Commun. 1998; 785
    • 5b Li K. Foresee LN. Tunge JA. J. Org. Chem. 2005; 70: 2881
    • 5c Kuethe JT. Wong A. Davies IW. Org. Lett. 2003; 5: 3975
    • 5d Inglis SR. Stojkoski C. Branson KM. Cawthray JF. Fritz D. Wiadrowski E. Ryke MS. Booker GW. J. Med. Chem. 2004; 47: 5405
    • 5e Fourquez JM. Godard A. Marsais F. Quéguiner G. J. Heterocycl. Chem. 1995; 32: 1165
    • 5f Coppolar GM. Hardtmann GE. J. Heterocycl. Chem. 1979; 16: 1605
    • 5g Iyobe A. Uchida M. Kamata K. Hotei Y. Kusama H. Harada H. Chem. Pharm. Bull. 2001; 49: 822
    • 6a Hewawasam P. Fan W. Knipe J. Moon SL. Boissard CG. Gribkoff VK. Starrett JE. Jr. Bioorg. Med. Chem. Lett. 2002; 12: 1779
    • 6b Ismaili L. Nadaradjane A. Nicod L. Guyon C. Xicluna A. Robert J. Refouvelet B. Eur. J. Med. Chem. 2008; 43: 1270
    • 6c Marcaccini S. Pepino R. Pozo MC. Basurto S. García-Valverde M. Torrobab T. Tetrahedron Lett. 2004; 45: 3999
    • 6d Grzegożek M. J. Heterocycl. Chem. 2008; 45: 1879
    • 6e Schejn A. Balan L. Falk V. Aranda L. Medjahdi G. Schneider R. CrystEngComm 2014; 16: 4493
    • 6f Vijayalakshmi S. Ragunath L. Rajendran SP. Heterocycl. Commun. 2001; 7: 177
    • 7a Cortese NA. Ziegler CB. Jr. Hrnjez BJ. Heck RF. J. Org. Chem. 1978; 43: 2952
    • 7b Kadnikov DV. Larock RC. J. Org. Chem. 2004; 69: 6772
    • 7c Terpko MO. Heck RF. J. Am. Chem. Soc. 1979; 101: 5281
    • 7d Tsuritani T. Yamamoto Y. Kawasaki M. Mase T. Org. Lett. 2009; 11: 1043
    • 7e Manley PJ. Bilodeau MT. Org. Lett. 2004; 6: 2433
    • 7f Minville J. Poulin J. Dufresne C. Sturino CF. Tetrahedron Lett. 2008; 49: 3677
    • 7g Jung JC. Oh S. Kim WK. Park WK. Kong JY. Park OS. J. Heterocycl. Chem. 2003; 40: 617
    • 7h Yang H. Guo L.-N. Duan X.-H. RSC Adv. 2014; 4: 52986
    • 7i Mai W.-P. Sun G.-C. Wang J.-T. Song G. Mao P. Yang L.-R. Yuan J.-W. Xiao Y.-M. Qu L.-B. J. Org. Chem. 2014; 79: 8094
    • 8a Lange JH. M. Verveer PC. Osnabrug SJ. M. Visser GM. Tetrahedron Lett. 2001; 42: 1367
    • 8b Razzaq T. Kappe CO. Tetrahedron Lett. 2007; 48: 2513
    • 8c Jia C. Dong Y. Tu S. Wang G. Tetrahedron 2007; 63: 892
    • 8d Subashini R. Khan F.-RN. Monatsh. Chem. 2012; 143: 485
    • 8e Acker TM. Khatri A. Vance KM. Slabber C. Bacsa J. Snyder JP. Traynelis SF. Liotta DC. J. Med. Chem. 2013; 56: 6434
  • 9 Horaguchi T. Hosokawa N. Tanemura K. Suzuki T. J. Heterocycl. Chem. 2002; 39: 61

    • For our recent work, see:
    • 10a Pan W. Dong D. Wang K. Zhang J. Wu R. Xiang D. Liu Q. Org. Lett. 2007; 9: 2421
    • 10b Xiang D. Wang K. Liang Y. Zhou G. Dong D. Org. Lett. 2008; 10: 345
    • 10c Xiang D. Xin X. Liu X. Zhang R. Yang J. Dong D. Org. Lett. 2012; 14: 644
    • 10d Zhang D. Zhang Q. Zhang N. Zhang R. Liang Y. Dong D. Chem. Commun. 2013; 49: 7358
    • 10e Zhou F. Liu X. Zhang N. Liang Y. Zhang R. Xin X. Dong D. Org. Lett. 2013; 15: 5786
    • 10f Zhang Q. Liu X. Xin X. Zhang R. Liang Y. Dong D. Chem. Commun. 2014; 50: 15378
  • 11 Xiang D. Xin X. Liu X. Kumar S. Dong D. Synlett 2011; 2187
  • 12 Liu X. Xin X. Xiang D. Zhang R. Kumar S. Zhou F. Dong D. Org. Biomol. Chem. 2012; 10: 5643
  • 13 Liu X. Zhang Q. Zhang D. Xin X. Zhang R. Zhou F. Dong D. Org. Lett. 2013; 15: 776
    • 14a Maas G. Stang PJ. J. Org. Chem. 1981; 46: 1606
    • 14b Nenajdenko VG. Vertelezkij PV. Koldobskij AB. Alabugin IV. Balenkova ES. J. Org. Chem. 1997; 62: 2483

      For reviews on iminium triflate, see:
    • 15a Baraznenok IL. Nenajdenko VG. Balenkova ES. Tetrahedron 2000; 56: 3077
    • 15b Snider BB. Chem. Rev. 1988; 88: 793
    • 15c Madelaine C. Valerio V. Maulide N. Chem. Asian J. 2011; 6: 2224

      For selected examples on iminium triflate, see:
    • 16a Barbaro G. Battaglia A. Bruno C. Giorgianni P. Guerrini A. J. Org. Chem. 1996; 61: 8480
    • 16b DeRoy PL. Charette AB. Org. Lett. 2003; 5: 4163
    • 16c Zheng X. Kerr MA. Org. Lett. 2006; 8: 3777
    • 16d Barbe G. Charette AB. J. Am. Chem. Soc. 2008; 130: 18
    • 16e Cui S. Wang J. Wang Y. J. Am. Chem. Soc. 2008; 130: 13526
    • 16f Pelletier G. Bechara WS. Charette AB. J. Am. Chem. Soc. 2010; 132: 12817
    • 16g Xiao K.-J. Luo J.-M. Ye K.-Y. Wang Y. Huang P.-Q. Angew. Chem. Int. Ed. 2010; 49: 3037
    • 16h Wang A.-E. Chang Z. Sun W.-T. Huang P.-Q. Org. Lett. 2015; 17: 732
    • 17a Kaiser D. Maulide N. J. Org. Chem. 2016; 81: 44221
    • 17b Falmagne JB. Escudero J. Taleb-Saharaoui S. Ghosez L. Angew. Chem., Int. Ed. Engl. 1981; 20: 879
    • 17c Movassaghi M. Hill MD. J. Am. Chem. Soc. 2006; 128: 14254
    • 17d Movassaghi M. Hill MD. Ahmad OK. J. Am. Chem. Soc. 2007; 129: 10096
    • 17e Wezeman T. Zhong S. Nieger M. Bräse S. Angew. Chem. Int. Ed. 2016; 55: 3823