Synlett 2017; 28(17): 2267-2271
DOI: 10.1055/s-0036-1590831
letter
© Georg Thieme Verlag Stuttgart · New York

Regio- and Diastereoselective Samarium-Mediated Allylic Benzoate Reductions

Trevor F. Stockdale
Department of Chemistry, Western Washington University, Bellingham, WA, USA   Email: oneilg@wwu.edu
,
Gregory W. O’Neil*
Department of Chemistry, Western Washington University, Bellingham, WA, USA   Email: oneilg@wwu.edu
› Author Affiliations
Financial support from the National Science Foundation (CHE-1151492) is gratefully acknowledged.
Further Information

Publication History

Received: 01 June 2017

Accepted after revision: 19 June 2017

Publication Date:
20 July 2017 (eFirst)

Abstract

A regio- and diastereoselective samarium(II)-mediated reduction of allylic benzoates is described. Yields for the reactions are generally high with diastereoselectivities up to 90:10 and in some cases only a single regioisomer was obtained. The stereoselectivity of the reaction is proposed to arise from chelation of a hydroxyl-stereocenter and starting alkene geometry, with protonation occurring intramolecularly by samarium-bound water.

Supporting Information

 
  • References and Notes

    • 1a Nicolaou KC. Ellery SP. Chen JS. Angew. Chem. Int. Ed. 2009; 48: 7140
    • 1b Edmonds DJ. Johnston D. Procter DJ. Chem. Rev. 2004; 104: 3371
    • 1c Molander GA. Harris CR. Chem. Rev. 1996; 96: 843
    • 2a Hasegawa E. Curran DP. J. Org. Chem. 1993; 58: 5008
    • 2b Amiel-Levy M. Hoz S. J. Am. Chem. Soc. 2009; 131: 8280
    • 2c Szostak M. Spain M. Parmar D. Procter DJ. Chem. Commun. 2012; 48: 330
    • 2d Szostak M. Spain M. Parmar D. Procter DJ. Chem. Soc. Rev. 2013; 42: 9155
    • 2e Szostak M. Spain M. Eberhart AJ. Procter DJ. J. Org. Chem. 2014; 79: 11988
  • 3 Procter DJ. Flowers RA. II. Skrydstrup T. Organic Synthesis using Samarium Diiodide . RSC Publishing; Cambridge, UK: 2010
  • 4 Schaefer SL. Roberts CL. Volz EO. Grasso MR. O’Neil GW. Tetrahedron Lett. 2013; 54: 6125
  • 5 Yoshida A. Hanamoto T. Inanaga J. Mikami K. Tetrahedron Lett. 1998; 39: 1777
  • 6 Wright AM. O’Neil GW. Tetrahedron Lett. 2016; 57: 3441
  • 7 Takeda M. Takatsu K. Shintani R. Hayashi T. J. Org. Chem. 2014; 79: 2354
  • 8 Marko IE. Murphy F. Dolan S. Tetrahedron Lett. 1996; 37: 2089
  • 9 Wipf P. Lim S. Angew. Chem. Int. Ed. 1993; 32: 1068
  • 10 Mulzer J. Mantoulidis A. Öhler E. J. Org. Chem. 2000; 65: 7456
    • 11a Cram DJ. Kopecky KR. J. Am. Chem. Soc. 1959; 81: 2748
    • 11b Reetz MT. Acc. Chem. Res. 1993; 26: 462
  • 12 See Supporting Information.
  • 13 For another report of SmI2 dimerization, see: Doisneau G. Beau J.-M. Tetrahedron Lett. 1998; 39: 3477
  • 14 Kawatsura M. Hosaka K. Matsuda F. Shirahama H. Synlett 1995; 729
  • 15 The reaction was also performed using DMPU and H2O together and gave the same d.r. (75:25) as that obtained when using DMPU (entry 1) or H2O (entry 5).
  • 16 Performing the reaction in D2O resulted in deuterium incorporation at C5 (Scheme 11):
  • 17 For a recent review, see: Alezra V. Kawabata T. Synthesis 2016; 48: 2997
  • 18 Keck GE. Wager CA. Sell T. Wager TT. J. Org. Chem. 1999; 64: 2172
  • 19 Sadasivam DV. Teprovich JA. Jr. Procter DA. Flowers RA. Org. Lett. 2010; 12: 4140
  • 20 General Procedure for SmI2/H2O Reductions: To a solution of SmI2 in THF (0.1 M, 11.2 mL) was added degassed H2O (2.0 mL) and the resulting red solution was stirred for 5 min before adding the substrate (0.16 mmol). The solution was stirred for 30 min before quenching with aq NaHCO3 (20 mL) and extracting with EtOAc (2 × 20 mL). The combined organic extracts were dried over MgSO4, filtered, and concentrated in vacuo. The residue was then purified by flash column chromatography on silica to yield: Compound 10: 20 mg (60%). Spectral data for the major isomer: IR (ATR): 3360, 3083, 3061, 3025, 2961, 2925, 2871, 1950, 1876, 1803, 1716, 1601, 1492, 1415, 1373, 1272, 1029, 971, 760, 698 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.38 (t, J = 4.7 Hz, 1 H), 7.30 (t, J = 6.9 Hz, 2 H), 7.20 (d, J = 8.0 Hz, 2 H), 5.74 (ddd, J = 15.5, 6.8, 1.1 Hz, 1 H), 5.33 (ddd, J = 15.5, 7.9, 1.4 Hz, 1 H), 3.47 (m, 2 H), 3.38 (dd, J =10.6, 8.1 Hz, 1 H), 2.36 (hept, J = 7.0 Hz, 1 H), 1.36 (d, J = 7.0 Hz, 3 H), 1.01 (d, J = 6.9 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 146.04, 136.89, 131.00, 128.43, 127.07, 126.06, 67.35, 42.27, 39.66, 21.48, 16.60. HRMS (ESI+): m/z [M]+ calcd for C13H18O+: 190.1358; found: 190.1358. Compound 27: 27 mg (60%). Spectral data for major diastereomer: IR (ATR): 3328, 3083, 3060, 3026, 2967, 2925, 2871, 1601, 1493, 1451, 1370, 1274, 1060, 970, 760, 699 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.30 (t, J = 7.6 Hz, 2 H), 7.18–7.22 (m, 3 H), 5.82 (ddd, J = 15.4, 6.7, 1.1 Hz, 1 H), 5.56 (ddd, J = 15.5, 6.6, 1.4 Hz, 1 H), 4.30 (p, J = 6.4 Hz, 1 H), 3.46 (p, J = 7.0, 6.4 Hz, 1 H), 1.36 (d, J = 7.0 Hz, 3 H), 1.28 (d, J = 6.4 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 145.56, 135.41, 132.87, 128.44, 127.16, 126.16, 68.87, 41.83, 23.42, 21.17. HRMS (ESI+): m/z [M – OH]+ calcd for C12H15: 159.1174; found: 159.1175.
  • 21 Corey EJ. Hannon FJ. Boaz NW. Tetrahedron 1989; 45: 545
  • 22 Eleil EL. Pillar C. J. Am. Chem. Soc. 1955; 77: 3600
  • 23 Prasad E. Flowers II RA. J. Am. Chem. Soc. 2002; 124: 6357
  • 24 Evans DA. Ennis MD. Mathre DJ. J. Am. Chem. Soc. 1982; 104: 1737
  • 25 Yu W. Zhang Y. Jin Z. Org. Lett. 2001; 3: 1447
  • 26 Qi W. McIntosh MC. Org. Lett. 2008; 10: 357
  • 27 Bied C. Kagan HB. Tetrahedron 1992; 48: 3877
  • 28 Chciuk TV. Anderson Jr WR. Flowers RA. J. Am. Chem. Soc. 2016; 138: 8738
  • 29 Prasad E. Flowers RA. J. Org. Chem. 2005; 127: 18093