Synlett 2017; 28(19): 2539-2555
DOI: 10.1055/s-0036-1590877
account
© Georg Thieme Verlag Stuttgart · New York

Cyclization and Cycloisomerization of π-Tethered Ynamides: An Expedient Synthetic Method to Construct Carbo- and Heterocycles

B. Prabagar, Nayan Ghosh, Akhila K. Sahoo*
Further Information

Publication History

Received: 24 May 2017

Accepted after revision: 20 July 2017

Publication Date:
13 September 2017 (eFirst)

Dedicated to Professor S. V. Kessar, Punjab University, India, for his outstanding contribution in the area of synthetic ­organic chemistry and also on the occasion of his 85th birthday

Abstract

Stable ynamides are used for the development of novel synthetic transformations and the construction of unusual carbo/heterocycles. The intramolecular cyclization of π-tethered alkene/alkyne/allene-ynamides is studied extensively for the fabrication of a wide range of molecular scaffolds for various applications. The ketene-acetal/aminal generated in situ from π-tethered ynamides participates in intramolecular cyclization/cycloisomerization processes to yield N-bearing fused heterocycles. This account summarizes the scientific merits and the advances made in cyclization and cycloisomerization strategies for stable π-tethered alkene/alkyne/allene-ynamides.

1 Introduction

2 π-Tethered Ynamides

3 Alkene-Tethered Ynamides

4 Alkyne-Tethered Ynamides

5 Allene-Tethered Ynamides

6 Concluding Remarks

 
  • References


    • For selected reviews on ynamides, see:
    • 1a Zificsak CA. Mulder JA. Hsung RP. Rameshkumar C. Wei L.-L. Tetrahedron 2001; 57: 7575
    • 1b DeKorver KA. Li H. Lohse AG. Hayashi R. Lu Z. Zhang Y. Hsung RP. Chem. Rev. 2010; 110: 5064
    • 1c Evano G. Coste A. Jouvin K. Angew. Chem. Int. Ed. 2010; 49: 2840
    • 1d Mulder JA. Kurtz KC. M. Hsung RP. Synlett 2003; 1379
    • 1e Evano G. Jouvin K. Coste A. Synthesis 2013; 45: 17
    • 1f Lu T. Hsung RP. ARKIVOC 2014; (i): 127
    • 2a Chechik-Lankin H. Livshin S. Marek I. Synlett 2005; 2098
    • 2b Fukudome Y. Naito H. Hata T. Urabe H. J. Am. Chem. Soc. 2008; 130: 1820
    • 2c Das JP. Chechik H. Marek I. Nat. Chem. 2009; 1: 128

      For various transformations on ynamides, see:
    • 3a Tanaka K. Takeishi K. Noguchi K. J. Am. Chem. Soc. 2006; 128: 4586
    • 3b Gourdet B. Rudkin ME. Lam HW. Org. Lett. 2010; 12: 2554
    • 3c Xu C.-F. Xu M. Jia Y.-X. Li C.-Y. Org. Lett. 2011; 13: 1556
    • 3d Gomes F. Fadel A. Rabasso N. J. Org. Chem. 2012; 77: 5439
    • 3e Kerr DJ. Miletic M. Chaplin JH. White JM. Flynn BL. Org. Lett. 2012; 14: 1732
    • 3f Laub HA. Evano G. Mayr H. Angew. Chem. Int. Ed. 2014; 53: 4968
    • 3g Romain E. Fopp C. Chemla F. Ferreira F. Jackowski O. Oestreich M. Perez-Luna A. Angew. Chem. Int. Ed. 2014; 53: 1
    • 3h Mackay WD. Fistikci M. Carris RM. Johnson JS. Org. Lett. 2014; 16: 1626
    • 3i Prabagar B. Nayak S. Mallick RK. Prasad R. Sahoo AK. Org. Chem. Front. 2016; 3: 110
    • 3j Duret G. Quinlan R. Martin RE. Bisseret P. Neuburger M. Gandon V. Blanchard N. Org. Lett. 2016; 18: 1610
    • 3k Kim Y. Dateer RB. Chang S. Org. Lett. 2017; 19: 190
    • 3l Kaldre D. Maryasin B. Kaiser D. Gajsek O. González L. Maulide N. Angew. Chem. Int. Ed. 2017; 56: 2212
    • 3m Duret G. Quinlan R. Yin B. Martin RE. Bisseret P. Neuburger M. Gandon V. Blanchard N. J. Org. Chem. 2017; 82: 1726

      For recent selected examples of cyclization reactions involving ynamides, see:
    • 4a Kramer S. Odabachian Y. Overgaard J. Rottländer M. Gagosz F. Skrydstrup T. Angew. Chem. Int. Ed. 2011; 50: 5090
    • 4b Rettenmeier E. Schuster AM. Rudolph M. Rominger F. Gade CA. Hashmi AS. K. Angew. Chem. Int. Ed. 2013; 52: 5880
    • 4c Karad SN. Liu R.-S. Angew. Chem. Int. Ed. 2014; 53: 9072
    • 4d Yu L. Cao J. Org. Biomol. Chem. 2014; 12: 39
    • 4e Fujino D. Yorimitsu H. Osuka A. J. Am. Chem. Soc. 2014; 136: 6255
    • 4f Zhu L. Yu Y. Mao Z. Huang X. Org. Lett. 2015; 17: 30
    • 4g Tokimizu Y. Wieteck M. Rudolph M. Oishi S. Fujii N. Hashmi AS. K. Ohno H. Org. Lett. 2015; 17: 604
    • 4h Liu J. Chen M. Zhang L. Liu Y. Chem. Eur. J. 2015; 21: 1009
    • 4i Yang Y. Liu H. Peng C. Wu J. Zhang J. Qiao Y. Wang X.-N. Chang J. Org. Lett. 2016; 18: 5022
    • 4j Lecomte M. Evano G. Angew. Chem. Int. Ed. 2016; 55: 4547
    • 4k Wang Y. Song L.-J. Zhang X. Sun J. Angew. Chem. Int. Ed. 2016; 55: 9704
    • 4l Xie L.-G. Shaaban S. Chen X. Maulide N. Angew. Chem. Int. Ed. 2016; 55: 12864
    • 4m Chen P. Song C.-x. Wang W.-s. Yua X.-l. Tang Y. RSC Adv. 2016; 6: 80055
    • 4n Alcaide B. Almendros P. Lázaro-Milla C. Chem. Eur. J. 2016; 22: 8998
    • 4o Nickel J. Fernández M. Klier L. Knochel P. Chem. Eur. J. 2016; 22: 14397
    • 4p Wang T. Niu D. Hoye TR. J. Am. Chem. Soc. 2016; 138: 7832
    • 4q Wang G. You X. Gan Y. Liu Y. Org. Lett. 2017; 19: 110
    • 4r Shen W.-B. Xiao X.-Y. Sun Q. Zhou B. Zhu X.-Q. Yan J.-Z. Lu X. Ye L.-W. Angew. Chem. Int. Ed. 2017; 56: 605
    • 4s Seath CP. Burley GA. Watson AJ. B. Angew. Chem. Int. Ed. 2017; 56: 3314
    • 4t Lonca GH. Tejo C. Chan HL. Chiba S. Gagosz F. Chem. Commun. 2017; 53: 736
  • 5 Wang X.-N. Yeom H.-S. Fang L.-C. He S. Ma Z.-X. Kedrowski BL. Hsung RP. Acc. Chem. Res. 2014; 47: 560

    • For selected examples of cycloisomerization reactions using enynes or diynes, see:
    • 6a Jiménez-Núñez E. Claverie CK. Nieto-Oberhuber C. Echavarren AM. Angew. Chem. Int. Ed. 2006; 45: 5452
    • 6b Sun J. Conley MP. Zhang L. Kozmin SA. J. Am. Chem. Soc. 2006; 128: 9705
    • 6c Fürstner A. Davies PW. Angew. Chem. Int. Ed. 2007; 46: 3410
    • 6d Gorin DJ. Sherry BD. Toste FD. Chem. Rev. 2008; 108: 3351
    • 6e Corma A. Leyva-Pérez A. Sabater MJ. Chem. Rev. 2011; 111: 1657
    • 6f Hashmi AS. K. Chem. Soc. Rev. 2012; 41: 2448
    • 6g Rao W. Koh MJ. Chan PW. H. J. Org. Chem. 2013; 78: 3183
    • 6h Teske J. Plietker B. ACS Catal. 2016; 6: 7148
    • 6i Chen X. Day DP. Teo WT. Chan PW. H. Org. Lett. 2016; 18: 5936
    • 6j Chen C. Zou Y. Chen X. Zhang X. Rao W. Chan PW. H. Org. Lett. 2016; 18: 4730
    • 6k Petrone DA. Franzoni I. Ye J. Rodríguez JF. Poblador-Bahamonde AI. Lautens M. J. Am. Chem. Soc. 2017; 139: 3546
    • 6l Yamamoto Y. Nishimura K.-i. Shibuya M. ACS Catal. 2017; 7: 1101
    • 7a Nayak S. Prabagar B. Sahoo AK. Org. Biomol. Chem. 2016; 14: 803
    • 7b Gilmore K. Alabugin IV. Chem. Rev. 2011; 111: 6513
    • 7c Yamamoto Y. Chem. Rev. 2012; 112: 4736
    • 7d Dorel R. Echavarren AM. Chem. Rev. 2015; 115: 9028
    • 7e Rao W. Susanti D. Ayers BJ. Chan PW. H. J. Am. Chem. Soc. 2015; 137: 6350
    • 7f Aguilar E. Sanz R. Fernández-Rodríguez MA. García-García P. Chem. Rev. 2016; 116: 8256
    • 8a Ghosh N. Nayak S. Sahoo AK. Chem. Eur. J. 2013; 19: 9428
    • 8b Nayak S, Ghosh N, Prabagar B, Sahoo AK. Org. Lett. 2015; 17: 5662
  • 9 Prabagar B. Nayak S. Prasad R. Sahoo AK. Org. Lett. 2016; 18: 3066
    • 10a Nayak S. Ghosh N. Sahoo AK. Org. Lett. 2014; 16: 2996
    • 10b Nayak S. Prabagar B. Ghosh N. Mallick RK. Sahoo AK. Synthesis 2017; 49: 4261
    • 11a Harvey DF. Sigano DM. Chem. Rev. 1996; 96: 271
    • 11b Chinchilla R. Nájera C. Chem. Rev. 2014; 114: 1783
    • 12a Witulski B. Stengel T. Angew. Chem. Int. Ed. 1998; 37: 489
    • 12b Witulski B. Gößmann M. Chem. Commun. 1999; 1879
  • 13 Huang J. Xiong H. Hsung RP. Rameshkumar C. Mulder JA. Grebe TP. Org. Lett. 2002; 4: 2417
    • 14a Saito N. Sato Y. Mori M. Org. Lett. 2002; 4: 803
    • 14b Mori M. Wakamatsu H. Saito N. Sato Y. Narita R. Satoc Y. Fujita R. Tetrahedron 2006; 62: 3872
  • 15 Marion F. Courillon C. Malacria M. Org. Lett. 2003; 5: 5095
  • 16 Witulski B. Lumtscher J. Bergsträßer U. Synlett 2003; 708
  • 17 Marion F. Coulomb J. Courillon C. Fensterbank L. Malacria M. Org. Lett. 2004; 6: 1509
    • 18a Couty S. Meyer C. Cossy J. Angew. Chem. Int. Ed. 2006; 45: 6726
    • 18b Couty S. Meyer C. Cossy J. Tetrahedron 2009; 1809
  • 19 Couty S. Meyer C. Cossy J. Synlett 2007; 2819
  • 20 Al-Rashid ZF. Hsung RP. Org. Lett. 2008; 10: 661
  • 21 Wang K.-B. Ran R.-Q. Xiu S.-D. Li C.-Y. Org. Lett. 2013; 15: 2374
  • 22 Tokimizu Y. Oishi S. Fujii N. Ohno H. Org. Lett. 2014; 16: 3138
  • 23 Zhang X. Hsung RP. Li H. Chem. Commun. 2007; 2420
    • 24a Tanaka D. Sato Y. Mori M. J. Am. Chem. Soc. 2007; 129: 7730
    • 24b Mori M. Tanaka D. Saito N. Sato Y. Organometallics 2008; 27: 6313
  • 25 Li H. Hsung RP. Org. Lett. 2009; 11: 4462
  • 26 Buzas A. Istrate F. Goff LX. F. Odabachian Y. Gagosz F. J. Organomet. Chem. 2009; 694: 515
  • 27 Wakamatsu H. Sakagami M. Hanata M. Takeshita M. Mori M. Macromol. Symp. 2010; 293: 5
    • 28a Zhang Y. DeKorver KA. Lohse AG. Zhang Y.-S. Huang J. Hsung RP. Org. Lett. 2009; 11: 899
    • 28b DeKorver KA. Hsung RP. Lohse AG. Zhang Y. Org. Lett. 2010; 12: 1840
  • 29 Vasu D. Hung H.-H. Bhunia S. Gawade SA. Das A. Liu R.-S. Angew. Chem. Int. Ed. 2011; 50: 6911
  • 30 Greenaway RL. Campbell CD. Holton OT. Russell CA. Anderson EA. Chem. Eur. J. 2011; 17: 14366
  • 31 Walker PR. Campbell CD. Suleman A. Carr G. Anderson EA. Angew. Chem. Int. Ed. 2013; 52: 9139
  • 32 Mak XY. Crombie AL. Danheiser RL. J. Org. Chem. 2011; 76: 1852
    • 33a DeKorver KA. Walton MC. North TD. Hsung RP. Org. Lett. 2011; 13: 4862
    • 33b DeKorver KA. Wang X.-N. Walton MC. Hsung RP. Org. Lett. 2012; 14: 1768
    • 33c Wang X.-N. Winston-McPherson GN. Walton MC. Zhang Y. Hsung RP. DeKorver KA. J. Org. Chem. 2013; 78: 6233
  • 34 Dateer RB. Pati K. Liu R.-S. Chem. Commun. 2012; 48: 7200
  • 35 DeKorver KA. Hsung RP. Song W.-Z. Wang X.-N. Walton MC. Org. Lett. 2012; 14: 3214
  • 36 Gati W. Rammah MM. Rammah MB. Couty F. Evano G. J. Am. Chem. Soc. 2012; 134: 9078
  • 37 Theunissen C. Métayer B. Henry N. Compain G. Marrot J. Martin-Mingot A. Thibaudeau S. Evano G. J. Am. Chem. Soc. 2014; 136: 12528
  • 38 Witulski B. Stengel T. Angew. Chem. Int. Ed. 1999; 38: 2426
  • 39 Alayrac C. Schollmeyer D. Witulski B. Chem. Commun. 2009; 1464
  • 40 Witulski B. Alayrac C. Angew. Chem. Int. Ed. 2002; 41: 3281
  • 41 Saito N. Ichimaru T. Sato Y. Org. Lett. 2012; 14: 1914
    • 42a Martínez-Esperón M.-F. Rodríguez D. Castedo L. Saá C. Org. Lett. 2005; 7: 2213
    • 42b Martínez-Esperón M.-F. Rodríguez D. Castedo L. Saá C. Tetrahedron 2006; 62: 3843
    • 42c Martínez-Esperón M.-F. Rodríguez D. Castedo L. Saá C. Tetrahedron 2008; 64: 3674
  • 43 Dunetz JR. Danheiser RL. J. Am. Chem. Soc. 2005; 127: 5776
  • 44 Garcia P. Moulin S. Miclo Y. Leboeuf D. Gandon V. Aubert C. Malacria M. Chem. Eur. J. 2009; 15: 2129
    • 45a Nissen F. Richard V. Alayrac C. Witulski B. Chem. Commun. 2011; 47: 6656
    • 45b Nissen F. Detert H. Eur. J. Org. Chem. 2011; 2845
    • 45c Dassonneville B. Witulski B. Detert H. Eur. J. Org. Chem. 2011; 2836
    • 46a Garcia P. Evanno Y. George P. Sevrin M. Ricci G. Malacria M. Aubert C. Gandon V. Org. Lett. 2011; 13: 2030
    • 46b Garcia P. Evanno Y. George P. Sevrin M. Ricci G. Malacria M. Aubert C. Gandon V. Chem. Eur. J. 2012; 18: 4337
  • 47 Yun SY. Wang K.-P. Lee N.-K. Mamidipalli P. Lee D. J. Am. Chem. Soc. 2013; 135: 4668
  • 48 Karmakar R. Mamidipalli P. Yun SY. Lee D. Org. Lett. 2013; 15: 1938
  • 49 Wang T. Hoye TR. J. Am. Chem. Soc. 2016; 138: 13870
  • 50 Rainier JD. Imbriglio JE. J. Org. Chem. 2000; 65: 7272
  • 51 Liu R. Winston-McPherson GN. Yang Z.-Y. Zhou X. Song W. Guzei IA. Xu X. Tang W. J. Am. Chem. Soc. 2013; 135: 8201
  • 52 Nadipuram AK. David WM. Kumar D. Kerwin SM. Org. Lett. 2002; 4: 4543
    • 53a Nadipuram AK. Kerwin SM. Tetrahedron Lett. 2006; 47: 353
    • 53b Nadipuram AK. Kerwin SM. Tetrahedron 2006; 62: 3798
  • 54 Klein M. Konig B. Tetrahedron 2004; 60: 1087
    • 55a For selected reviews on allenes, see: Krause N. Winter C. Chem. Rev. 2011; 111: 1994
    • 55b Aubert C. Fensterbank L. Garcia P. Malacria M. Simonneau A. Chem. Rev. 2011; 111: 1954
    • 56a Ikeda I. Honda K. Osawa E. Shiro M. Aso M. Kanematsu K. J. Org. Chem. 1996; 61: 2031
    • 56b Krause N. Hashimi AS. K. Modern Allene Chemistry . Vol. 1-2 Wiley-VCH; Weinheim; 2004
    • 56c Pham HV. Houk KN. J. Org. Chem. 2014; 79: 8968
  • 57 Garcia P. Harrak Y. Diab L. Cordier P. Ollivier C. Gandon V. Malacria M. Fensterbank L. Aubert C. Org. Lett. 2011; 13: 2952
  • 58 Gupta AK. Park DI. Oh CH. Tetrahedron Lett. 2005; 46: 4171