Synthesis
DOI: 10.1055/s-0036-1590887
paper
© Georg Thieme Verlag Stuttgart · New York

Zincation and Magnesiation of Functionalized Silylated Cyano­hydrins Using TMP-Bases

Alicia Castelló-Micó, Paul Knochel*
  • Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5–13, Haus F, 81377 München, Germany   Email: paul.knochel@cup.uni-muenchen.de
Further Information

Publication History

Received: 21 July 2017

Accepted after revision: 27 July 2017

Publication Date:
24 August 2017 (eFirst)

Abstract

Polyfunctional silylated cyanohydrins are readily magnesiated or zincated with TMPMgCl·LiCl or TMP2Zn·2MgCl2·2LiCl leading to the corresponding metallated derivatives. These Mg- or Zn-derivatives react with various electrophiles such as benzylic bromides, allylic bromides, acid chlorides, aldehydes, NCCO2Et, or MeSO2SMe. Subsequently, TBAF-deprotection provides the corresponding keto or 1,2-diketo derivatives.

Supporting Information

 
  • References

    • 2a Seebach D. Angew. Chem., Int. Ed. Engl. 1969; 8: 639
    • 2b Seebach D. Angew. Chem., Int. Ed. Engl. 1979; 18: 239
    • 3a Seebach D. Corey EJ. J. Org. Chem. 1975; 40: 231
    • 3b Gröbel BT. Seebach D. Synthesis 1977; 357
    • 3c Deuchert K. Hertenstein U. Hünig S. Wehner G. Chem. Ber. 1979; 112: 2045
    • 3d Ager DJ. Chem Soc. Rev. 1982; 11: 493
    • 3e Albright JD. Tetrahedron 1983; 39: 3207
    • 4a Stork G. Maldonado L. J. Am. Chem. Soc. 1971; 93: 5286

    • For other selective metalation of heterocycles with lithium bases see:
    • 4b Anctil EJ.-G. Snieckus V. J. Organomet. Chem. 2002; 653: 150
    • 4c Whisler MC. MacNeil S. Snieckus V. Beak P. Angew. Chem. Int. Ed. 2004; 43: 2206
    • 4d Chinchilla R. Nájera C. Yus M. Tetrahedron 2005; 61: 3139
    • 4e Pelletier G. Constantineau-Forget L. Charette AB. Chem. Commun. 2014; 50: 6883
    • 4f Fuentes MA. Kennedy AR. Mulvey RE. Parkinson JA. Rantanen T. Robertson SD. Snieckus V. Chem. Eur. J. 2015; 21: 14812
    • 5a Wright A. West R. J. Am. Chem. Soc. 1974; 96: 3214
    • 5b Ritter K. Hanack M. Tetrahedron Lett. 1985; 26: 1285
    • 5c Cunico RF. Kuan CP. J. Org. Chem. 1992; 57: 1202
    • 5d Ogiku T. Yoshida S.-I. Kuroda T. Ohmizu H. Iwasaki T. Synlett 1992; 651
    • 5e Ogiku T. Yoshida S.-I. Ohmizu H. Tameo I. J. Org. Chem. 1995; 60: 4585
    • 5f Yoshida S.-I. Yamanaka T. Miyake T. Moritani Y. Ohmizu H. Iwasaki T. Tetrahedron 1997; 53: 9585
    • 5g García Ruano JL. Martín-Castro AM. Tato F. Pastor CJ. J. Org. Chem. 2005; 70: 7346
    • 6a Haag B. Mosrin M. Ila H. Malakhov V. Knochel P. Angew. Chem. Int. Ed. 2011; 50: 9794
    • 6b Kunz T. Knochel P. Angew. Chem. Int. Ed. 2012; 51: 1958
    • 6c Unsinn A. Knochel P. Chem. Commun. 2012; 48: 2680
    • 6d Klatt T. Markiewicz JT. Sämann C. Knochel P. J. Org. Chem. 2014; 79: 4253
    • 6e Sämann C. Coya E. Knochel P. Angew. Chem. Int. Ed. 2014; 53: 1430
    • 6f Dhayalan V. Knochel P. Synthesis 2015; 47: 3246

    • For recent examples, see:
    • 6g Nafe J. Knochel P. Synthesis 2016; 48: 103
    • 6h Benischke AD. Ellwart M. Becker MR. Knochel P. Synthesis 2016; 48: 1101
    • 6i Klier L. Aranzamendi E. Ziegler D. Nickel J. Karaghiosoff K. Carell T. Knochel P. Org. Lett. 2016; 18: 1068
    • 6j Greiner R. Blanc R. Petermayer C. Karaghiosoff K. Knochel P. Synlett 2016; 27: 231
    • 6k Castelló-Micó A. Nafe J. Higashida K. Karaghiosoff K. Gingras M. Knochel P. Org. Lett. 2017; 19: 360
    • 6l Balkenhohl M. François C. Sustac-Roman D. Quinio P. Knochel P. Org. Lett. 2017; 19: 536
    • 6m Ketels M. Ziegler DS. Knochel P. Synlett 2017; 28: in press; DOI: 10.1055/s-0036-1588837
    • 7a Wunderlich SH. Knochel P. Angew. Chem. Int. Ed. 2007; 46: 7685
    • 7b Wunderlich SH. Knochel P. Org. Lett. 2008; 10: 4705
    • 8a Krasovskiy A. Krasovskaya V. Knochel P. Angew. Chem. Int. Ed. 2006; 45: 2958
    • 8b García-Álvarez P. Graham DV. Hevia E. Kennedy AR. Klett J. Mulvey RE. O’Hara CT. Weatherstone S. Angew. Chem. Int. Ed. 2008; 47: 8079
  • 9 Pelter A. Ward RS. Storer NP. Tetrahedron 1994; 50: 10829
    • 10a Kobayashi S. Tsuchiya Y. Mukaiyama T. Chem. Lett. 1991; 537
    • 10b Hayashi M. Miyamoto Y. Inoue S. Oguni N. J. Org. Chem. 1993; 58: 1515
    • 10c North M. Synlett 1993; 807
    • 10d Hanashima Y. Sawada D. Nogami H. Kanai M. Shibasaki M. Tetrahedron 2001; 57: 805
    • 10e Deng H. Ister MP. Snapper ML. Hoveyda AH. Angew. Chem. Int. Ed. 2002; 41: 1009
    • 10f Tian SK. Hong R. Deng L. J. Am. Chem. Soc. 2003; 125: 9900
    • 10g Kim SS. Rajagopal G. Song DH. J. Organomet. Chem. 2004; 689: 1734
    • 10h Liu C.-Y. Ren H. Knochel P. Org. Lett. 2006; 8: 617
  • 11 Knochel P. Yeh MC. P. Berk SC. Talbert J. J. Org. Chem. 1988; 53: 2390
  • 12 De Lang R.-J. van Hooijdonk MJ. C. M. Brandsma L. Kramer H. Seinen W. Tetrahedron 1998; 54: 2953
  • 13 Villieras J. Rambaud M. Org. Synth. 1988; 66: 220
  • 14 Krasovskiy A. Knochel P. Angew. Chem. Int. Ed. 2004; 43: 3333
  • 15 Horiuchi H. Hosaka M. Mashio H. Terata M. Ishida S. Kyushin S. Okutsu T. Takeuchi T. Hiratsuka H. Chem. Eur. J. 2014; 20: 6054
  • 16 Melnyk P. Gasche J. Thal C. Synth. Commun. 1993; 23: 2727
  • 17 Blench T. Goodacre S. Lai Y. Liang Y. MacLeod C. Magnuson S. Tsui V. Williams K. Zhang B. La Roche A.-G., Switzerland, Patent WO2012066061, 2012
  • 18 Xu X.-L. Wang J. Yu C.-L. Chen W. Li Y.-C. Li Y. Zhang H.-B. Yang X.-D. Bioorg. Med. Chem. Lett. 2014; 24: 4926
  • 19 Mosrin M. Boudet N. Knochel P. Org. Biomol. Chem. 2008; 6: 3237