Synthesis
DOI: 10.1055/s-0036-1590901
paper
© Georg Thieme Verlag Stuttgart · New York

Two-Step Synthesis of α,β-Unsaturated γ-Amino Acid Esters via N-Heterocyclic Carbene Catalyzed [4+2] Cycloaddition of Enals and Nitroso Compounds

Qiang Liu, Xiang-Yu Chen, Sun Li, Fabrizio Vetica, Gerhard Raabe, Dieter Enders*
  • Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany   Email: enders@rwth-aachen.de
Further Information

Publication History

Received: 02 August 2017

Accepted: 11 August 2017

Publication Date:
07 September 2017 (eFirst)

Abstract

An efficient strategy for the synthesis of various of α,β-unsaturated γ-amino acid esters has been established employing N-heterocyclic carbene catalyzed [4+2] cycloadditions of β-methyl enals and aromatic nitroso compounds to afford 1,2-oxazin-6-ones in good yields. A subsequent acid-catalyzed esterification under ring opening yields the γ-amino enoates in good yields.

Supporting Information

 
  • References

  • 1 List B. J. Am. Chem. Soc. 2002; 124: 5656
  • 2 Bøgevig A. Juhl K. Kumaragurubaran N. Zhuang W. Jørgensen KA. Angew. Chem. Int. Ed. 2002; 41: 1790
    • 3a Momiyama N. Yamamoto H. J. Am. Chem. Soc. 2005; 127: 1080
    • 3b Chen YK. Yoshida M. MacMillan DW. J. Am. Chem. Soc. 2006; 128: 9328
    • 3c Ibrahem I. Rios R. Vesely J. Zhao G.-L. Córdova A. Chem. Commun. 2007; 849
    • 3d Momiyama N. Yamamoto Y. Yamamoto H. J. Am. Chem. Soc. 2007; 129: 1190
    • 3e Chen X.-Y. Xia F. Ye S. Org. Biomol. Chem. 2013; 11: 5722
    • 3f Wu X. Liu B. Zhang Y. Jeret M. Wang H. Zheng P. Yang S. Song BA. Chi YR. Angew. Chem. Int. Ed. 2016; 55: 12280
  • 4 Farrant M. Nusser Z. Nat. Rev. Neurosci. 2005; 6: 215
  • 5 Dougherty JA. Rhoney DH. Neurol. Res. 2001; 23: 821
  • 6 Silverman RB. Angew. Chem. Int. Ed. 2008; 47: 3500
  • 7 Lapin I. CNS Drug Rev. 2001; 7: 471
  • 8 Sachais BA. Logue JN. Carey MS. Arch. Neurol. 1977; 34: 422
    • 9a Ramachandran PV. Burghardt TE. Chem. Eur. J. 2005; 11: 4387
    • 9b Ramachandran PV. Biswas D. Org. Lett. 2007; 9: 3025
    • 9c Yeh CH. Prasad Korivi R. Cheng CH. Angew. Chem. Int. Ed. 2008; 47: 4892
    • 9d Shen A. Liu M. Jia Z.-S. Xu M.-H. Lin G.-Q. Org. Lett. 2010; 12: 5154
    • 9e Rajender Reddy L. Prasad K. Prashad M. J. Org. Chem. 2012; 77: 6296
    • 9f Maslivetc VA. Rubina M. Rubin M. Org. Biomol. Chem. 2015; 13: 8993
    • 9g Ramachandran PV. Mitsuhashi W. Biswas B. Org. Chem. Front. 2015; 2: 885
    • 10a Dieter RK. Lu K. Velu SE. J. Org. Chem. 2000; 65: 8715
    • 10b Dieter RK. Lu K. J. Org. Chem. 2002; 67: 847
    • 10c Baxter JM. Steinhuebel D. Palucki M. Davies IW. Org. Lett. 2005; 7: 215

      For selected reviews, see:
    • 11a Enders D. Balensiefer T. Acc. Chem. Res. 2004; 37: 534
    • 11b Enders D. Niemeier O. Henseler A. Chem. Rev. 2007; 107: 5606
    • 11c Nair V. Menon RS. Biju AT. Sinu C. Paul RR. Jose A. Sreekumar V. Chem. Soc. Rev. 2011; 40: 5336
    • 11d Bugaut X. Glorius F. Chem. Soc. Rev. 2012; 41: 3511
    • 11e Cohen DT. Scheidt KA. Chem. Sci. 2012; 3: 53
    • 11f Douglas J. Churchill G. Smith AD. Synthesis 2012; 44: 2295
    • 11g Grossmann A. Enders D. Angew. Chem. Int. Ed. 2012; 51: 314
    • 11h Izquierdo J. Hutson GE. Cohen DT. Scheidt KA. Angew. Chem. Int. Ed. 2012; 51: 11686
    • 11i Bode JW. Nat. Chem. 2013; 5: 813
    • 11j Chen X.-Y. Ye S. Synlett 2013; 24: 1614
    • 11k Chen X.-Y. Ye S. Org. Biomol. Chem. 2013; 11: 7991
    • 11l De Sarkar S. Biswas A. Samanta RC. Studer A. Chem. Eur. J. 2013; 19: 4664
    • 11m Ryan SJ. Candish L. Lupton DW. Chem. Soc. Rev. 2013; 42: 4906
    • 11n Hopkinson MN. Richter C. Schedler M. Glorius F. Nature 2014; 510: 485
    • 11o Liu K. Hovey MT. Scheidt KA. Chem. Sci. 2014; 5: 4026
    • 11p Mahatthananchai J. Bode JW. Acc. Chem. Res. 2014; 47: 696
    • 11q Flanigan DM. Romanov-Michailidis F. White NA. Rovis T. Chem. Rev. 2015; 115: 9307
    • 11r Menon RS. Biju AT. Nair V. Chem. Soc. Rev. 2015; 44: 5040
    • 11s Wang MH. Scheidt KA. Angew. Chem. Int. Ed. 2016; 55: 14912
    • 11t Reyes E. Uria U. Carrillo L. Vicario JL. Synthesis 2017; 49: 451
    • 12a Zhao YM. Cheung MS. Lin Z. Sun J. Angew. Chem. Int. Ed. 2012; 51: 10359
    • 12b Chen X. Yang S. Song BA. Chi YR. Angew. Chem. Int. Ed. 2013; 52: 11134; Angew. Chem. 2013, 125, 11340
    • 12c Chen XY. Xia F. Cheng JT. Ye S. Angew. Chem. Int. Ed. 2013; 52: 10644
    • 12d Xu J. Jin Z. Chi YR. Org. Lett. 2013; 15: 5028
    • 12e Jia W.-Q. Chen X.-Y. Sun L.-H. Ye S. Org. Biomol. Chem. 2014; 12: 2167
    • 12f Wang M. Huang Z. Xu J. Chi YR. J. Am. Chem. Soc. 2014; 136: 1214
    • 12g Xiao Z. Yu C. Li T. Wang X.-S. Yao C. Org. Lett. 2014; 16: 3632
    • 12h Cheng JT. Chen XY. Gao ZH. Ye S. Eur. J. Org. Chem. 2015; 1047
    • 12i Li B.-S. Wang Y. Jin Z. Zheng P. Ganguly R. Chi YR. Nat. Commun. 2015; 6: 6207
    • 12j Lin Y. Yang L. Deng Y. Zhong G. Chem. Commun. 2015; 51: 8330
    • 12k Que Y. Li T. Yu C. Wang X.-S. Yao C. J. Org. Chem. 2015; 80: 3289
    • 12l Que Y. Xie Y. Li T. Yu C. Tu S. Yao C. Org. Lett. 2015; 17: 6234
    • 12m Wu Z. Li F. Wang J. Angew. Chem. Int. Ed. 2015; 54: 1629
    • 12n Xiao Y. Wang J. Xia W. Shu S. Jiao S. Zhou Y. Liu H. Org. Lett. 2015; 17: 3850
    • 12o Xie Y. Que Y. Li T. Zhu L. Yu C. Yao C. Org. Biomol. Chem. 2015; 13: 1829
    • 12p Janssen-Müller D. Singha S. Olyschläger T. Daniliuc CG. Glorius F. Org. Lett. 2016; 18: 4444
    • 12q Jia W.-Q. Zhang H.-M. Zhang C.-L. Gao Z.-H. Ye S. Org. Chem. Front. 2016; 3: 77
    • 12r Xu J. Yuan S. Miao M. Org. Lett. 2016; 18: 3822
    • 12s Yao H. Zhou Y. Chen X. Zhang P. Xu J. Liu H. J. Org. Chem. 2016; 81: 8888
    • 12t Zhu L. Yu C. Li T. Wang Y. Lu Y. Wang W. Yao C. Org. Biomol. Chem. 2016; 14: 1485
    • 12u Chen X.-Y. Liu Q. Chauhan P. Li S. Peuronen A. Rissanen K. Jafari E. Enders D. Angew. Chem. Int. Ed. 2017; 56: 6241
  • 13 Shen LT. Shao PL. Ye S. Adv. Synth. Catal. 2011; 353: 1943
  • 14 Mo J. Chen X. Chi YR. J. Am. Chem. Soc. 2012; 134: 8810
  • 15 CCDC 1558783 contains the supplementary crystallographic data for spiropyrozolone 3c. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 16 For 16 of the hydroxylamine intermediates, neither the intermediates, nor the Bamberger-type rearrangement products could be isolated: Seayad, J.; Patra, P.-K.; Zhang, Y.; Ying, J.-Y. Org. Lett. 2008, 10, 95.