Synthesis
DOI: 10.1055/s-0036-1590904
paper
© Georg Thieme Verlag Stuttgart · New York

One-Pot Synthesis of α,β-Unsaturated Esters, Ketones, and Nitriles from Alcohols and Phosphonium Salts

Weijie Ding, Juan Hu, Huile Jin, Xiaochun Yu*, Shun Wang*
Financial support from the National Natural Science Foundation of China (No. 21302143 and 51572198) and Natural Science Foundation of Zhejiang Province (No. LY13B020006 and LZ17E020002) is greatly appreciated.
Further Information

Publication History

Received: 17 July 2017

Accepted after revision: 10 August 2017

Publication Date:
12 September 2017 (eFirst)

Abstract

A general method for the synthesis of α,β-unsaturated esters, ketones, and nitriles is successfully achieved by a one-pot copper-catalyzed oxidation with O2 in air as oxidant. The solvent mixture of acetonitrile and formamide (1:1) is optimized to ensure the oxidation of alcohols, deprotonation of phosphonium salt, and Wittig reaction occur efficiently in one pot. A broad range of substrates has been explored for this process, including three electron-withdrawing group (CO2Et, COPh, CN) functionalized phosphonium salts. They reacted not only with benzylic and heteroaromatic alcohols, but also with aliphatic alcohols, forming the corresponding α,β-unsaturated esters, ketones, and nitriles in moderate to excellent yields.

Supporting Information

 
  • References

    • 1a Wittig G. Geissler G. Justus Liebigs Ann. Chem. 1953; 580: 44
    • 1b Wittig G. Schollkopf U. Chem. Ber. 1954; 87: 1318
  • 3 Ireland RE. Norbeck DW. J. Org. Chem. 1985; 50: 2198
  • 4 Barrett AG. M. Hamprecht D. Ohkubo M. J. Org. Chem. 1997; 62: 9376
    • 5a Shuto S. Niizuma S. Matsuda A. J. Org. Chem. 1998; 63: 4489
    • 5b Gholinejad M. Firouzabadi H. Bahrami M. Nájera C. Tetrahedron Lett. 2016; 57: 3773
    • 6a Pillips DJ. Graham AE. Synlett 2008; 649
    • 6b Taylor RJ. K. Reid M. Foot J. Raw SA. Acc. Chem. Res. 2005; 38: 851
    • 6c Nakamura M. Mori Y. Okuyama K. Tanikawa K. Yasuda S. Hanada K. Kobayashi S. Org. Biomol. Chem. 2003; 1: 3362
    • 6d Blackburn L. Wei X. Taylor RJ. K. Chem. Commun. 1999; 1337
  • 7 Bressette AR. Glover LC. IV. Synlett 2004; 738
  • 8 Crisóstomo FR. P. Carrillo R. Martín T. García-Tellado F. Martín VS. J. Org. Chem. 2005; 70: 10099
  • 9 Vatèle JM. Tetrahedron Lett. 2006; 47: 715
  • 10 MacCoss RN. Blaskus EP. Ley SV. Tetrahedron Lett. 2003; 44: 7779
  • 11 Kim G. Lee DG. Chang S. Bull. Korean Chem. Soc. 2001; 22: 943
  • 12 Lee EY. Kim Y. Lee JS. Park J. Eur. J. Org. Chem. 2009; 2943
  • 13 Read CD. G. Moore PW. Williams CM. Green Chem. 2015; 17: 4537
  • 14 Miyamura H. Suzuki A. Yasukawa T. Kobayashi S. Adv. Synth. Catal. 2015; 357: 3815
  • 15 Dutta ID. Sarbajna A. Pandey P. Rahaman SM. W. Singh K. Bera JK. Organometallics 2016; 35: 1505
  • 16 Semmelhack MF. Schmid CR. Cortes DA. Chou CS. J. Am. Chem. Soc. 1984; 106: 3374

    • For reviews on the copper-catalyzed oxidation of alcohols, see:
    • 17a Ryland BL. Stahl SS. Angew. Chem. Int. Ed. 2014; 53: 8824
    • 17b Cao Q. Dornan LM. Rogan L. Hughes NL. Muldoon ML. Chem. Commun. 2014; 50: 4524; and references therein

      Cu/TEMPO catalyst systems:
    • 18a Gamez P. Arends I. Reedijk J. Sheldon RA. Chem. Commun. 2003; 2414
    • 18b Gamez E. Arends I. Sheldon RA. Reedijk J. Adv. Synth. Catal. 2004; 346: 805
    • 18c Hoover JM. Stahl SS. J. Am. Chem. Soc. 2011; 133: 16901
    • 18d Hoover JM. Ryland BL. Stahl SS. J. Am. Chem. Soc. 2013; 135: 2357
    • 18e Ryland BL. McCann SD. Brunold TC. Stahl SS. J. Am. Chem. Soc. 2014; 136: 12166 ; and references therein
  • 19 Leung PS. W. Teng Y. Toy PH. Org. Lett. 2010; 12: 4996
  • 20 Zhou Y. Zhou MX. Chen M. Su JH. Du JF. Song QL. RSC Adv. 2015; 5: 103977
  • 21 Wang Y. Du G. Gu C. Xing F. Dai B. He L. Tetrahedron 2016; 72: 472
  • 22 Jiang XY. Hartwig JF. Angew. Chem. Int. Ed. 2017; 56: 8887
  • 23 Xia X. Toy PH. Synlett 2015; 26: 1737
  • 24 Arai S. Koike Y. Hada H. Nishida A. J. Org. Chem. 2010; 75: 7573
  • 25 Webb D. Jamison TF. Org. Lett. 2012; 14: 2465
  • 26 Yang W. Miao T. Li P. Wang L. RSC Adv. 2015; 5: 95833
  • 27 Kim N. David WL. Aust. J. Chem. 2017; 70: 436
  • 28 Zhang L. Wang A. Wang W. Huang Y. Liu X. Miao S. Liu J. Zhang T. ACS Catal. 2015; 5: 6563
  • 29 Liang D. Li X. Lan Q. Huang W. Yuan L. Ma Y. Tetrahedron Lett. 2016; 57: 2207
  • 30 Zhu YL. Li C. Zhang JD. She MY. Sun W. Wan K. Wang YQ. Yin B. Liu P. Li JL. Org. Lett. 2015; 17: 3872
  • 31 Avik KB. Alakananda HJ. RSC Adv. 2014; 4: 23287
  • 32 Jiang Q. Jia J. Xu B. Zhao A. Guo C.-C. J. Org. Chem. 2015; 80: 3586
  • 33 Xu LT. Zhang C. He YP. Tan LS. Ma DW. Angew. Chem. Int. Ed. . 2016; 55: 331
  • 34 Yang XY. Jia YX. Tay WS. Li YX. Pullarkata SA. Leung PH. Dalton Trans. . 2016; 45: 13449
  • 35 Chen S.-J. Lu G.-P. Cai C. RSC Adv. 2015; 5: 13208
  • 36 Han Y. Song X. Qiu Y. Hao X. Wang J. Wu X. Liu X. Liang Y. J. Org. Chem. 2015; 80: 9200
  • 37 Li L. Stimac JC. Geary LM. Tetrahedron Lett. 2017; 58: 1379
  • 38 Wang Z. Chang S. Org. Lett. 2013; 15: 1990
  • 39 Gu Z. Wang Y. Yao Y. Xia X. Wang H. Li W. Catal. Lett. 2015; 145: 2046
  • 40 Stephen AD. Bruce AL. Anthony H. Raymond AW. George WG. J. Org. Chem. 1979; 44: 4640
  • 41 Lanari D. Alonzi M. Ferlin F. Santoro S. Vaccaro L. Org. Lett. 2016; 18: 2680