Synlett 2018; 29(04): 483-488
DOI: 10.1055/s-0036-1590961
letter
© Georg Thieme Verlag Stuttgart · New York

An Efficient Cyanide-Free Approach towards 1-(2-Pyridyl)isoquinoline-3-carbonitriles via the Reaction of 5-Phenacyl-1,2,4-triazines with 1,2-Dehydrobenzene in the Presence of Alkyl Nitrites

Dmitry S. Kopchuk
a  Department of Organic & Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federation   Email: [email protected]   Email: [email protected]
b  I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Str., Yekaterinburg, 620219, Russian Federation
,
Alexey P. Krinochkin
a  Department of Organic & Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federation   Email: [email protected]   Email: [email protected]
,
Albert F. Khasanov
a  Department of Organic & Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federation   Email: [email protected]   Email: [email protected]
,
Igor S. Kovalev
a  Department of Organic & Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federation   Email: [email protected]   Email: [email protected]
,
Pavel A. Slepukhin
a  Department of Organic & Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federation   Email: [email protected]   Email: [email protected]
b  I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Str., Yekaterinburg, 620219, Russian Federation
,
Ekaterina S. Starnovskaya
a  Department of Organic & Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federation   Email: [email protected]   Email: [email protected]
,
Anindita Mukherjee
a  Department of Organic & Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federation   Email: [email protected]   Email: [email protected]
,
Matiur Rahman
a  Department of Organic & Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federation   Email: [email protected]   Email: [email protected]
,
Grigory V. Zyryanov
a  Department of Organic & Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federation   Email: [email protected]   Email: [email protected]
b  I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Str., Yekaterinburg, 620219, Russian Federation
,
Adinath Majee
c  Department of Chemistry, Visva-Bharati (A Central University), Santiniketan-731235, India
,
Vladimir L. Rusinov
a  Department of Organic & Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federation   Email: [email protected]   Email: [email protected]
b  I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Str., Yekaterinburg, 620219, Russian Federation
,
Oleg N. Chupakhin
a  Department of Organic & Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federation   Email: [email protected]   Email: [email protected]
b  I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Str., Yekaterinburg, 620219, Russian Federation
,
a  Department of Organic & Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federation   Email: [email protected]   Email: [email protected]
› Author Affiliations
We are pleased to acknowledge the Russian Science Foundation (Ref. # 16-43-02020) for funding. A. Majee acknowledges financial support from the DST-RSF Major Research Project (Ref. No. INT/RUS/RSF/P-08).
Further Information

Publication History

Received: 16 October 2017

Accepted: 24 October 2017

Publication Date:
28 November 2017 (online)


Abstract

A cyanide-free method for the preparation of 1-(2-pyridyl)isoquinoline-3-carbonitriles (3-cyanoisoquinolines) was developed. The interaction of 5-phenacyl-3-(2-pyridyl)-1,2,4-triazines with 1,2-dehydrobenzene generated in situ from anthranilic acid and an excess of amyl nitrites afforded the target compounds in good yields. The proposed mechanism involves the in situ transformation of the 5-phenacyl group into the 5-cyano group under the action of alkyl nitrite and the following inverse demand aza-Diels–Alder reaction of thus formed 5-cyano-1,2,4-triazines with 1,2-dehydrobenzene affording the target products. The presence of the 5-phenacyl substituent is a key for the reaction, as in case of 5-styryl- or 5-phenylethynyl-3-(2-pyridyl)-1,2,4-triazines the formation of the 1,2,4-triazine ring-transformation products was observed

Supporting Information

 
  • References and Notes

    • 1a Tadross PM. Stoltz BM. Chem. Rev. 2012; 112: 3550
    • 1b Pellissier H. Santelli M. Tetrahedron 2003; 59: 701
    • 1c Lee J.-J. Noll BC. Smith BD. Org. Lett. 2008; 10: 1735
    • 1d Zyryanov GV. Palacios MA. Anzenbacher PJr. Org. Lett. 2008; 10: 3681
    • 1e Anzenbacher PJr. Mosca L. Palacios MA. Zyryanov GV. Koutnik P. Chem. Eur. J. 2012; 18: 12712
    • 1f Khasanov AF. Kopchuk DS. Kovalev IS. Taniya OS. Giri K. Slepukhin PA. Santra S. Rahman M. Majee A. Charushin VN. Chupakhin ON. New J. Chem. 2017; 41: 2309
    • 1g Wu D. Ge H. Liu SH. Yin J. RSC Adv. 2013; 3: 22727
    • 1h García D. Rodríguez-Pérez L. Herranz MA. Peña D. Guitián E. Bailey S. Al-Galiby Q. Noori M. Lambert CJ. Pérez D. Martín N. Chem. Commun. 2016; 52: 6677
    • 1i Criado A. Vizuete M. Gómez-Escalonilla MJ. García-Rodriguez S. Fierro JL. G. Cobas A. Peña D. Guitián E. Langa F. Carbon 2013; 63: 140
    • 2a Castillo J.-C. Quiroga J. Abonia R. Rodriguez J. Coquerel Y. Org. Lett. 2015; 17: 3374
    • 2b Castillo J.-C. Quiroga J. Abonia R. Rodriguez J. Coquere Y. J. Org. Chem. 2015; 80: 9767
    • 2c Spiteri C. Keeling S. Moses JE. Org. Lett. 2010; 12: 3368
    • 2d Shi F. Waldo JP. Chen Y. Larock R. C. Org. Lett. 2008; 10: 2409
    • 2e McMahon TC. Medina JM. Yang Y.-F. Simmons BJ. Houk KN. Garg NK. J. Am. Chem. Soc. 2015; 137: 4082
    • 2f Chakrabarty S. Chatterjee I. Tebben L. Studer A. Angew. Chem. Int. Ed. 2013; 52: 2968
    • 2g Kovalev IS. Kopchuk DS. Zyryanov GV. Slepukhin PA. Rusinov VL. Chupakhin ON. Chem. Heterocycl. Compd. 2012; 48: 536
    • 3a d’a Rocha Gonsalves AM. Pinho e Melo TM. V. D. Gilchrist TL. Tetrahedron 1992; 48: 6821
    • 3b Dhar R. Hiihnermann W. Kampchen T. Overheu W. Seitz G. Chem. Ber. 1983; 116: 97
    • 3c Kopchuk DS. Chepchugov NV. Taniya OS. Khasanov AF. Giri K. Kovalev IS. Santra S. Zyryanov GV. Majee A. Rusinov VL. Chupakhin ON. Tetrahedron Lett. 2016; 57: 5639
    • 4a Suh S.-E. Barros SA. Chenoweth DM. Chem. Sci. 2015; 6: 5128
    • 4b Li J. Li P. Wu J. Gao J. Xiong W.-W. Zhang G. Zhao Y. Zhang Q. J. Org. Chem. 2014; 79: 4438
    • 4c Suh S.-E. Chenoweth DM. Org. Lett. 2016; 18: 4080
    • 5a Kopchuk DS. Nikonov IL. Zyryanov GV. Nosova EV. Kovalev IS. Slepukhin PA. Rusinov VL. Chupakhin ON. Mendeleev Commun. 2015; 25: 13
    • 5b Nikonov IL. Kopchuk DS. Kovalev IS. Zyryanov GV. Khasanov AF. Slepukhin PA. Rusinov VL. Chupakhin ON. Tetrahedron Lett. 2013; 54: 6427
  • 6 Kopchuk DS. Chepchugov NV. Khasanov AF. Kovalev IS. Santra S. Nosova EV. Zyryanov GV. Majee A. Rusinov VL. Chupakhin ON. Tetrahedron Lett. 2016; 57: 3862
  • 7 Konno S. Ohba S. Agata M. Aizawa Y. Sagi M. Yamanaka H. Heterocycles 1987; 26: 3259
  • 8 Konno S. Ohba S. Sagi M. Yamanaka H. Chem. Pharm. Bull. 1987; 35: 1378
  • 9 Konno S. Ohba S. Sagi M. Yamanaka H. Heterocycles 1986; 24: 1243
  • 10 Kozhevnikov DN. Kozhevnikov VN. Kovalev IS. Rusinov VL. Chupakhin ON. Aleksandrov GG. Russ. J. Org. Chem. 2002; 38: 744
  • 11 Huang JJ. J. Org. Chem. 1985; 50: 2293
  • 12 Rykowski A. Branowska D. Makosza M. Van Ly P. J. Heterocycl. Chem. 1996; 33: 1567
  • 13 Kirby GW. Tan SL. Uff BC. J. Chem. Soc. D. 1969; 18: 1075
  • 14 Alam M. Hawley RC. Lynch SM. Narayanan A. WO201486701, 2014
  • 15 Grande-Carmona F. Iglesias-Sigüenza J. Álvarez E. Díez E. Fernández R. Lassaletta JM. Organometallics 2015; 34: 5073
  • 16 Dubé D. Blouin M. Brideau C. Chan C.-C. Desmarais S. Ethier D. Falgueyret J.-P. Friesen RW. Girard M. Girard Y. Guay J. Riendeau D. Tagari P. Young RN. Bioorg. Med. Chem. Lett. 1998; 8: 1255
  • 17 Mataka S. Takahashi K. Tsuda Y. Tashiro M. Heterocycles 1980; 14: 789
    • 18a Phuan P.-W. Yang B. Knapp JM. Wood AB. Lukacs GL. Kurth MJ. Verkman AS. Mol. Pharmacol. 2011; 80: 683
    • 18b Knapp JM. Wood AB. Phuan P.-W. Lodewyk MW. Tantillo DJ. Verkman AS. Kurth MJ. J. Med. Chem. 2012; 55: 1242
  • 19 Sahu R. Fulwa VK. Jena HS. Manivannan V. Polyhedron 2012; 33: 9
  • 20 Wu SC. Yoon D. Chin J. van Kirk K. Seethala R. Golla R. He B. Harrity T. Kunselman LK. Morgan NN. Ponticiello RP. Taylor JR. Zebo R. Harper TW. Li W. Wang M. Zhang L. Sleczk BG. Nayeem A. Sheriff S. Camac DM. Morin PE. Everlof JG. Li Y.-X. Ferraro CA. Kieltyka K. Shou W. Vath MB. Zvyaga TA. Gordon DA. Robl JA. Bioorg. Med. Chem. Lett. 2011; 21: 6693
  • 21 Prokhorov AM. Slepukhin PA. Kozhevnikov DN. J. Organomet. Chem. 2008; 693: 1886
  • 22 Prokhorov AM. Kozhevnikov DN. Rusinov VL. Matern AI. Nikitin MM. Chupakhin ON. Eremenko IL. Aleksandrov GG. Russ. J. Org. Chem. 2005; 41: 1702
  • 23 Iglesias E. Brandariz I. Org. Biomol. Chem. 2013; 11: 1059
  • 24 Representative Synthetic Procedure for 4-Arylisoquinoline-3-carbonitriles 6 Corresponding 1,2,4-triazines 1, 4, or 9d (1.0 mmol) were suspended in dry toluene (60 mL). iso-Amyl nitrite or n-amyl nitrite (0.47 mL, 3.5 mmol) was added at once. The resulting mixture was stirred under reflux while the solution of anthranilic acid (3.5 mmol) in dry 1,4-dioxane (15 mL) was added dropwise for 30 min. The reaction mixture was heated under reflux for an additional hour and then cooled to room temperature. After that the reaction mixture was washed with 3 M aq KOH solution (3 × 50 mL), dried with anhydrous Na2SO4. After the filtration and evaporation of the solvents under reduced pressure the obtained residue was purified by column chromatography (silica gel) using the corresponding eluent. 1-(Pyridin-2-yl)-4-phenylisoquinoline-3-carbonitrile (6a) Eluent: DCM/EtOAc (3:1); Rf = 0.4; yield 230 mg (75%); mp 171–173 °С. 1Н NMR (400 MHz, DMSO-d 6): δ = 7.53–7.60 (m, 3 H, Ph), 7.62–7.69 (m, 3 H, Ph, H-5 (py)), 7.72–7.76 (m, 1 H, isoquin.), 7.82–7.87 (m, 2 H, isoquin.), 8.06 (ddd, 1 Н, J = 7.8, 7.8, 2.0 Hz, Н-4 (py)), 8.12 (dd, 1 Н, J = 7.8, 0.8 Hz, Н-3 (py)), 8.80 (dd, 1 Н, J = 4.8, 2.0 Hz, Н-6 (py)), 8.90–8.94 (m, 1 H, isoquin.). 13C NMR (100 MHz, CDCl3): δ = 117.6, 123.9, 125.4, 125.6, 126.5, 127.5, 128.6, 128.9, 129.4, 130.1, 130.2, 131.4, 133.8, 135.9, 137.3, 140.5, 148.7, 157.0. IR (neat): 2227 cm–1 (CN). MS (ESI): m/z [M + H]+ calcd for С21Н14N3 +: 308.12; found: 308.12. Anal. Calcd (%) for C21H13N3: C, 82.07; H, 4.26; N, 13.67. Found: C, 81.88; H, 4.03; N, 13.32. 4-(4-Methoxyphenyl)-1-(pyridine-2-yl)isoquinoline-3-carbonitrile (6b) Eluent: DCM/EtOAc (3:1); Rf = 0.5; yield 246 mg (73%); mp 175–177 °С. 1Н NMR (400 MHz, CDCl3): δ = 3.93 (s, 3 Н, ОМе), 7.13 (m, 2 Н, 4-MeOPh), 7.48 (m, 3 Н, 4-MeOPh, Н-5 (pу)), 7.75 (m, 2 Н, isoquin.), 7.85 (m, 1 Н, isoquin.), 7.97 (ddd, 1 Н, J = 7.8, 7.8, 2.0 Hz, Н-4 (pу)), 8.13 (dd, 1 Н, J = 7.8, 0.8 Hz, Н-3 (pу)), 8.82 (m, 2 Н, Н-6 (pу), isoquin.). IR (neat): 2228 cm–1 (CN). MS (ESI): m/z [M + H]+ calcd for С22Н16N3O+: 387.10; found: 387.10. Anal. Calcd (%) for C22H15N3O: C, 78.32; H, 4.48; N, 12.46. Found: C, 78.08; H, 4.24; N, 12.16. 4-(4-Chlorophenyl)-1-(pyridine-2-yl)isoquinoline-3-carbonitrile (6c) Eluent: DCM/EtOAc (3:1); Rf = 0.4; yield 252 mg (74%); mp 180–182 °С. 1Н NMR (400 MHz, CDCl3): δ = 7.45–7.51 (m, 3 H, H-5 (py), 4-chlorophenyl), 7.59 (m, 2 H, 4-chlorophenyl), 7.72–7.82 (m, 3 H, isoquin.), 7.97 (ddd, 1 Н, J = 7.8, 7.8, 2.0 Hz, Н-4 (py)), 8.13 (dd, 1 Н, J = 7.8, 0.8 Hz, Н-3 (py)), 8.81 (dd, 1 Н, J = 4.8, 2.0 Hz, Н-6 (py)), 8.87 (m, 1 H, isoquin.). IR (neat): 2226 cm–1 (CN). MS (ESI): m/z [M + H]+ calcd for С21Н13ClN3 +: 342.08; found: 342.08. Anal. Calcd (%) for C21H12ClN3: C, 73.79; H, 3.54; N, 12.29. Found: C, 73.62; H, 3.38; N, 12.38.
  • 25 Kopchuk DS. Nikonov IL. Zyryanov GV. Kovalev IS. Rusinov VL. Chupakhin ON. Chem. Heterocycl. Compd. 2014; 50: 907
  • 26 Further information can be found in the CIF file. CCDC 1558492 contains the supplementary crystallographic data for compound 8. The data can be obtained free of charge from The ­Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 27 Kozhevnikov DN. Kozhevnikov VN. Prokhorov AM. Ustinova MM. Rusinov VL. Chupakhin ON. Aleksandrov GG. König B. Tetrahedron Lett. 2006; 47: 869
  • 28 Further information can be found in the CIF file. CCDC 1577518 contains the supplementary crystallographic data for compound 9f. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 29 Kopchuk DS. Chepchugov NV. Kovalev IS. Santra S. Rahman M. Giri K. Zyryanov GV. Majee A. Charushin VN. Chupakhin ON. RSC Adv. 2017; 7: 9610