CC BY-ND-NC 4.0 · SynOpen 2017; 01(01): 0147-0155
DOI: 10.1055/s-0036-1590963
paper
Copyright with the author

Synthesis of N-Pyridin-2-ylmethyl and N-Quinolin-2-ylmethyl ­Substituted Ethane-1,2-diamines

Yi-Qiu Yang
a   School of Pharmacy, Guangdong Medical University, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, 523808, P. R. of China   Email: yshuang@gdmu.edu.cn
,
Long-Zhi Ke
b   Laboratory of Urology, Guangdong Medical University, ­Zhanjiang 524001, P. R. of China   Email: jianjunliulab@163.com
,
Gui-Fei Wang
a   School of Pharmacy, Guangdong Medical University, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, 523808, P. R. of China   Email: yshuang@gdmu.edu.cn
,
Shu-Yong Song
a   School of Pharmacy, Guangdong Medical University, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, 523808, P. R. of China   Email: yshuang@gdmu.edu.cn
,
Ming-Ning Qiu
b   Laboratory of Urology, Guangdong Medical University, ­Zhanjiang 524001, P. R. of China   Email: jianjunliulab@163.com
,
Jian-Jun Liu*
b   Laboratory of Urology, Guangdong Medical University, ­Zhanjiang 524001, P. R. of China   Email: jianjunliulab@163.com
,
Yun-Sheng Huang*
a   School of Pharmacy, Guangdong Medical University, 1 Xincheng Ave, Songshan Lake Technology Park, Dongguan, 523808, P. R. of China   Email: yshuang@gdmu.edu.cn
› Author Affiliations
This project was financially supported by the National Natural ­Science Funds of China (Grant No. 81272833) and Guangdong Science Foundation (Grant No. 2016A030313676).
Further Information

Publication History

Received: 20 September 2017

Accepted after revision: 26 October 2017

Publication Date:
23 November 2017 (online)


§ The authors contributed equally to this work

Abstract

Two N-(2-(bis(pyridin-2-ylmethyl)amino)ethyl)quinoline-2-carboxamides and two N-(2-(bis(quinolin-2-ylmethyl)amino)ethyl)quinoline-2-carboxamides have been synthesized. These structures contain five nitrogen atoms that can form coordinate bonds with metal ions such as Mn(II) and Fe(II). An additional coordinating bond can be formed between the metal ion and a neutral molecule of nitric oxide (NO). The resultant complexes are potentially useful agents for targeted delivery of NO to in vivo biological sites such as tumors, where the NO is released upon irradiation with long-wavelength light. Initial work involving the synthesis and characterization of these analogues is reported here.

Supporting Information

 
  • References

  • 1 Sharma JN. Al-Omran A. Parvathy SS. Inflammopharmacology 2007; 15: 252
  • 2 Loscalzo J. Circ. Res. 2013; 113: 100
  • 3 Vincent SR. Prog. Neurobiol. (Oxford, U. K.) 2010; 90: 246
  • 4 Bogdan C. Nat. Immunol. 2001; 2: 907
  • 5 Riddell DR. Owen JS. Vitam. Horm. (London, U. K.) 1999; 57: 25
  • 6 Nathan CF. Hibbs JB. Curr. Opin. Immunol. 1991; 3: 65
  • 7 Blaise GA. Gauvin D. Gangal M. Authier S. Toxicology 2005; 208: 177
  • 8 Brüne B. Cell Death Differ. 2003; 10: 864
  • 9 Simeone AM. Collela S. Krahe R. Johnson MM. Mora E. Tari AM. Carcinogenesis 2006; 27: 568
  • 10 Choudhari SK. Chaudhary M. Bagde S. Gadbail AR. Joshi V. World J. Surg. Oncol. 2013; 11: 118
  • 11 Xu W. Liu LZ. Loizidou M. Ahmed M. Charles IG. Cell Res. 2002; 12: 311
  • 12 Huerta-Yepez S. Vega M. Jazirehi A. Garban H. Hongo F. Cheng G. Bonavida B. Oncogene 2004; 23: 4993
  • 13 Donia M. Maksimovic-Ivanic D. Mijatovic S. Mojic M. Miljkovic D. Timotijevic G. Fagone P. Caponnetto S. Al-Abed Y. McCubrey J. Stosic-Grujicic S. Nicoletti F. Cell Cycle 2011; 10: 492
  • 14 Adams C. McCarthy HO. Coulter JA. Worthington J. Murphy C. Robson T. Hirst DG. J. Gene Med. 2009; 11: 160
  • 15 Frederiksen LJ. Siemens DR. Heaton JP. Maxwell LR. Adams MA. Graham CH. J. Urol. 2003; 170: 1003
  • 16 Stewart GD. Nanda J. Katz E. Bowman KJ. Christie JG. Brown DJ. McLaren DB. Riddick AC. Ross JA. Jones GD. Habib FK. Biochem. Pharmacol. 2011; 81: 203
  • 17 Royle JS. Ross JA. Ansell I. Bollina P. Tulloch DN. Habib FK. J. Urol. 2004; 172: 338
  • 18 Baritaki S. Huerta-Yepez S. Sahakyan A. Karagiannides I. Bakirtzi K. Jazirehi A. Bonavida B. Cell Cycle 2010; 9: 4931
  • 19 Siemens DR. Heaton JP. Adams MA. Kawakami J. Graham CH. Urology. 2009; 74: 878
  • 20 Mascharak PK. Indian J. Chem., Sect. A: Inorg., Bio-inorg., Phys., Theor. 2012; 51: 99
  • 21 Miller MR. Megson IL. Br. J. Pharmacol. 2007; 151: 305
  • 22 Huerta S. Chilka S. Bonavida B. Int. J. Oncol. 2008; 33: 909
  • 23 Wang PG. Xian M. Tang X. Wu X. Wen Z. Cai T. Janczuk AJ. Chem. Rev. 2002; 102: 1091
  • 24 Pavlos CM. Xu H. Toscano JP. Curr. Top. Med. Chem. 2005; 5: 637
  • 25 Eroy-Reveles AA. Leung Y. Beavers CM. Olmstead MM. Mascharak PK. J. Am. Chem. Soc. 2008; 130: 4447
  • 26 Hitomi Y. Iwamoto Y. Kodera M. Dalton Trans. 2014; 2161
  • 27 Ghosh K. Eroy-Reveles AA. Avila B. Holman TR. Olmstead MM. Mascharak PK. Inorg. Chem. 2004; 43: 2988
  • 28 Patra AK. Mascharak PK. Inorg. Chem. 2003; 42: 7363
  • 29 Eroy-Reveles AA. Hoffman-Luca CG. Mascharak PK. Dalton Trans. 2007; 5268
  • 30 Patra AK. Rose MJ. Murphy KA. Olmstead MM. Mascharak PK. Inorg. Chem. 2004; 43: 4487
  • 31 Sarmiento RM. R. Nettekoven MH. Taylor S. Plancher JM. Richter H. Roche O. Bioorg. Med. Chem. Lett. 2009; 19: 4495
  • 32 Yoshikawa K. Kobayashi S. Nakamoto Y. Haginoya N. Komoriya S. Yoshino T. Nagata T. Mochizuki A. Watanabe K. Suzuki M. Kanno H. Ohta T. Bioorg. Med. Chem. 2009; 17: 8221
  • 33 Song SY. Lu HL. Wang GF. Yang YQ. Huang YS. Res. Chem. Intermed. 2016; 42: 4433
  • 34 Waghmodea SB. Mahalea G. Patila VP. Renalsonb K. Singhb D. Synth. Commun. 2013; 43: 3272
  • 35 Hwang H. Kim J. Jeong J. Chang S. J. Am. Chem. Soc. 2014; 136: 10770
  • 36 Dale L. Boger DL. Panek JS. J. Am. Chem. Soc. 1985; 107: 5745
  • 37 Chauhan K. Datta A. Adhikari A. Chuttani K. Kumar SA. Mishra AK. Org. Biomol. Chem. 2014; 12: 7328