Synlett 2018; 29(03): 314-317
DOI: 10.1055/s-0036-1591491
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Boronocysteine

Samantha M. Gibson
Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK   Email: tom.sheppard@ucl.ac.uk
,
Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK   Email: tom.sheppard@ucl.ac.uk
,
Department of Chemistry, University College London, 20 Gordon St, London, WC1H 0AJ, UK   Email: tom.sheppard@ucl.ac.uk
› Author Affiliations
This work was supported by an Engineering and Physical Sciences Research Council Studentship.
Further Information

Publication History

Received: 22 August 2017

Accepted after revision: 16 September 2017

Publication Date:
20 October 2017 (online)


Abstract

Herein we report the first synthesis of protected boronocysteine. The target compound was prepared via copper-catalysed diastereoselective nucleophilic borylation of a sulfinimine. After deprotection to give the amine as the hydrochloride salt, four boronocysteine amide derivatives were prepared through reaction with a variety of different active acylating agents.

Supporting Information

 
  • References and Notes

    • 1a Yang W. Gao X. Wang B. Med. Res. Rev. 2003; 23: 346
    • 1b Dembitsky VM. Al Aziz Quntar A. Srebnik M. Mini-Rev. Med. Chem. 2004; 4: 1001
    • 1c Dembitsky VM. Srebnik M. Tetrahedron 2003; 59: 579
    • 1d Matteson DS. Med. Res. Rev. 2008; 28: 233
    • 1e Andrés P. Ballano G. Calaza MI. Cativela C. Chem. Soc. Rev. 2016; 45: 2291
  • 2 Matteson DS. Sadhu KM. Organometallics 1984; 3: 614
  • 3 Matteson DS. Cheng T.-C. J. Organomet. Chem. 1966; 6: 100
    • 4a Tsai DJ. S. Jesthi PK. Matteson DS. Organometallics 1983; 2: 1543
    • 4b Matteson DS. J. Organomet. Chem. 1999; 581: 51
    • 5a Beenen MA. An C. Ellman JA. J. Am. Chem. Soc. 2008; 130: 6910
    • 5b Buesking W. Bacauanu V. Cai I. Ellman JA. J. Org. Chem. 2014; 79: 3671
    • 5c Solé C. Gulyás H. Fernández E. Chem. Commun. 2012; 48: 3769
  • 6 Jagannathan S. Forsyth TP. Kettner CA. J. Org. Chem. 2001; 66: 6375
  • 7 He Z. Zajdlik A. St Denis JD. Assem N. Yudin AK. J. Am. Chem. Soc. 2012; 134: 9926
  • 8 Batsanov AS. Grosjean C. Schütz T. Whiting A. J. Org. Chem. 2007; 72: 6276

    • For other approaches, see:
    • 9a Zheng B. Deloux L. Pereira S. Skrzypczak-Jankun E. Cheesman BV. Sabat M. Morris S. Appl. Organomet. Chem. 1996; 10: 267
    • 9b Touchet S. Carreaux F. Molander GA. Carboni B. Bouillon A. Adv. Synth. Catal. 2011; 353: 3391
    • 9c Kawamorita S. Miyazaki T. Iwai T. Ohimiya H. Sawamura M. J. Am. Chem. Soc. 2012; 134: 12924
    • 9d Hu N. Zhao G. Zhang Y. Liu X. Li G. Tang W. J. Am. Chem. Soc. 2015; 137: 6746
    • 9e Li C. Wang J. Barton LM. Yu S. Tian M. Peters DS. Kumar M. Yu AW. Johnson KA. Chatterjee AK. Yan M. Baran PS. Science 2017; 357: in press; DOI: 10.1126/science.aam7355
    • 10a Kettner C. Mersinger L. Knabb R. J. Biol. Chem. 1990; 265: 18289
    • 10b Lebarbier C. Carreaux F. Carboni B. Boucher JL. Bioorg. Med. Chem. Lett. 1998; 8: 2573
    • 10c Watanabe T. Momose I. Abe M. Abe H. Sawa R. Umezawa Y. Ikeda D. Takahashi Y. Akamatsu Y. Bioorg. Med. Chem. Lett. 2009; 19: 2343
    • 10d Lebarbier C. Carreaux F. Carboni B. Synthesis 1996; 1371
    • 10e Matteson DS. Michnick TJ. Willett RD. Patterson CD. Organometallics 1989; 8: 726
  • 12 Matteson DS. J. Organomet. Chem. 1999; 581: 51
  • 13 Lantos I. Razgaitis C. Sutton BM. J. Heterocycl. Chem. 1982; 19: 1375
  • 14 Yoneda K. Ota A. Kawashima Y. Chem. Pharm. Bull. 1993; 41: 876
  • 15 Ghosh S. Tochtrop GP. Tetrahedron Lett. 2009; 50: 1723
  • 16 (E)-N-{2-[(4-Methoxybenzyl)thio]ethylidene}-2-methylpropane-2-sulfinamide (5) Copper(II) sulfate (1.27 g, 7.94 mmol) and aldehyde 4 (779 mg, 3.97 mmol, 1.1 equiv) were added to a solution of (±)-tert-butyl sulfinamide (438 mg, 3.61 mmol) in anhydrous CH2Cl2 (7.2 mL). The reaction was stirred at r.t. for 18 h, before filtering through Celite. The solvents were removed in vacuo and the residue obtained was purified by column chromatography to give an orange oil (865 mg, 2.89 mmol, 80%). 1H NMR (600 MHz, CDCl3): δ = 7.98 (1 H, t, J = 5.6 Hz, NCH), 7.23 (2 H, d, J = 6.5 Hz, ArH), 6.85 (2 H, d, J = 6.5 Hz, ArH), 3.79 (3 H, s, OCH3), 3.66 (2 H, s, ArCH2), 3.35 (1 H, dd, J = 14.3, 6.0 Hz, 1 × SCH 2CH), 3.31 (1 H, dd, J = 14.3, 5.3, 1 × SCH 2CH), 1.22 (9 H, s, t Bu). 13C NMR (150 MHz, CDCl3): δ = 164.2, 158.9, 130.3, 129.2, 114.1, 57.0, 55.4, 35.02, 34.3, 22.5. LRMS (CI): m/z (%) = 420 (100), 300 (37) [M + H+], 240 (30), 195 (32) [M – SO t Bu]+), 121 (88) [PMB+]. HRMS: m/z calcd for C14H22NO2S2: 300.10865; found: 300.10877. IR (film): νmax = 2958 (C–H), 1609 (C=C), 1510 (C=N), 1458 (C=C), 1083 (S=O) cm-1.
  • 17 N-{2-[(4-Methoxybenzyl)thio]-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl}-2-methylpropane-2-sulfinamide (6) Using flame-dried glassware under an argon atmosphere, CuCl (38.4 mg, 0.388 mmol), (±)-BINAP (111.1 mg, 0.1784 mmol), and B2pin2(1.331 g, 5.242 mmol) were dissolved in anhydrous THF (4 mL). KO t Bu (1 M in THF, 1.4 mL, 1.4 mmol) was added whilst stirring at r.t. After 10 min, the reaction was cooled to –20 °C, and aldehyde 5 (1.0338 g, 3.4522 mmol) was added followed by MeOH (300 μL, 7.41 mmol) and the reaction stirred overnight. The solvent was removed in vacuo and the resultant oil purified by flash column chromatography using EtOAc in CH2Cl2 (20 → 35%) to give 6 as an orange oil (878 mg, 2.056 mmol, 60%); Rf = 0.08 (EtOAc/CH2Cl2 = 1:4). 1H NMR (600 MHz, CDCl3): δ = 7.24 (2 H, d, J = 8.6 Hz, ArH), 6.82 (2 H, d, J = 8.6 Hz, ArH), 3.78 (3 H, s, OCH3), 3.71 (1 H, d, J = 5.6 Hz, NH), 3.69 (s, 2 H, ArCH2S), 3.22 (1 H, m, CHB), 2.77 (1 H, dd, J = 13.4, 6.3 Hz, 1 × SCH 2CH), 2.72 (1 H, dd, J = 13.4, 7.9 Hz, 1 × SCH 2CH), 1.25 (s, 6 H, 2 × pinacol-CH3), 1.23 (s, 9 H, t Bu), 1.20 (s, 6 H, 2 × pinacol-CH3). 13C NMR (150 MHz, CDCl3): δ = 158.7, 130.1, 130.0, 114.0, 84.3, 56.2, 55.3, 41.3 (br), 35.2, 34.6, 25.0 (2 C), 22.6. LRMS (CI): m/z (%) = 428 (41), [M + H]+, 371 (18) [M+ t Bu)], 322 (38) [M+ – SO t Bu), 121 (100) [PMB+]. IR: νmax = 2977 (C–H), 2930 (C–H), 1609 (Ar), 1511 (Ar), 1544 (Ar), 1369 (B–O), 1246, 1140 (B–C), 1033 (S=O). HRMS: m/z calcd for C20H34BNO4S2: 428.2095; found: 428.2095.
  • 18 2-[(4-Methoxybenzyl)thio]-1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethanamine hydrochloride (7) A solution of HCl in dioxane (4 M, 585 μL, 2.34 mmol) was added to 6 (99.7 mg, 0.233 mmol) dissolved in anhydrous MeOH (3 mL) to give a pale yellow solution. The reaction was stirred for 3 h. The solvent was removed in vacuo to give an orange residue (75.3 mg). The residue was washed with Et2O, sonicated, and centrifuged to give 7 as a light brown solid (68 mg, 0.190 mmol, 82%). 1H NMR (400 MHz, MeOD-d 4): δ = 7.29 (2 H, d, J = 8.7 Hz, ArH), 6.89 (2 H, d, J = 8.7 Hz, ArH) 3.80 (3 H, s, OCH3), 3.79 (2 H, s, ArCH2), 3.01 (1 H, dd, J = 8.7, 4.7 Hz, CHB), 2.85 (1 H, dd, J = 14.3,4.8 Hz, 1 × CΗ 2CH), 2.73 (1 H, dd, J = 14.3, 8.8 Hz, 1 × CH 2CH), 1.33 (12 H, s, 4 × CH3). 13C NMR (100 MHz, MeOD-d 4): δ = 159.1, 129.9, 129.5, 113.7, 85.5, 74.4, 54.5, 35.1, 30.4, 23.8, 23.7. LRMS (CI): m/z (%) = 323 (100) [M + H]+, 198 (18) [M – Bpin]+. HRMS: m/z calcd for C16H27BNO3S: 323.1836; found: 323.18359. IR (solid): νmax = 2975 (C–H), 2958 (C–H), 2831 (C–H), 1607, 1583, 1411 cm–1.
  • 19 tert-Butyl [2-({2-[(4-Methoxybenzyl)thio]-1-(4,4,5,5-tetra-methyl-1,3,2-dioxaborolan-2-yl)ethyl}amino)-2-oxoethyl]carbamate (10a) Using flame-dried glassware under an argon atmosphere, Boc-Gly-OH (87.5 mg, 0.50 mmol) was dissolved in anhydrous CH2Cl2 (1.5 mL) and cooled to –20 °C. To this was added NMM (66 μL, 0.60 mmol) followed by IBCF (58 μL, 0.45 mmol), and the mixture stirred for 5 h at –20 °C. HCl salt 7 (23.4 mg, 65.1 μmol) was added, followed by NMM (7 μL, 65 μmol), and the reaction stirred overnight. The reaction mixture was concentrated in vacuo and the resultant oil purified by flash column chromatography using deactivated silica (35% water w/w) eluting with MeOH in EtOAc (0 → 10%) to give 10a as a pale yellow oil (28 mg, 58.0 μmol, 89%). 1H NMR (600 MHz, CDCl3): δ = 7.51 (1 H, br s, CHNH), 7.21 (2 H, d, J = 8.7 Hz, ArH), 6.82 (2 H, d, J = 8.7 Hz, ArH), 5.29 (1 H, br s, CH2NH), 3.93 (2 H, d, J = 5.7, NHCH 2), 3.78 (3 H, s, OCH3), 3.65 (2 H, s, ArCH2), 2.81 (1 H, br d, J = 11.5 Hz, CHB), 2.75 (1 H, dd, J = 14.1, 3.2 Hz, 1 × SCH 2CH), 2.46 (1 H, dd, J = 14.1, 11.5 Hz, 1 × SCH 2CH), 1.44 (9 H, s, Bu), 1.18 (6 H, s, 2 × pinacol-CH3), 1.16 (6 H, s, 2 × pinacol-CH3). 13C NMR (150 MHz, CDCl3): δ = 174.9, 158.7, 130.3, 130.1, 114.1, 81.6, 55.4, 54.0, 41.4, 35.2, 33.6, 29.8, 28.4, 25.0, 24.9, 14.3. LRMS (CI): m/z (%) = 481 (100) [M + H]+. HRMS: m/z calcd for C23H37BN2O6S: 480.2574; found: 480.2575. IR (film): νmax = 2970 (C–H), 2926 (C–H), 1697 (br, C=O), 1609 (C=O), 1511, 1456 cm–1.