CC BY-ND-NC 4.0 · Synlett 2018; 29(09): 1229-1231
DOI: 10.1055/s-0036-1591556
letter
Copyright with the author

Synthesis of Nepetoidin B

Vitaliy Timokhin
a  Department of Energy Great Lakes Bioenergy Research Center and Department of Biochemistry, the Wisconsin Energy Institute, University of Wisconsin, Madison, WI, 53726, USA   Email: [email protected]
,
a  Department of Energy Great Lakes Bioenergy Research Center and Department of Biochemistry, the Wisconsin Energy Institute, University of Wisconsin, Madison, WI, 53726, USA   Email: [email protected]
,
Yukiko Tsuji
a  Department of Energy Great Lakes Bioenergy Research Center and Department of Biochemistry, the Wisconsin Energy Institute, University of Wisconsin, Madison, WI, 53726, USA   Email: [email protected]
,
John Grabber
b  U.S. Dairy Forage Research Center, USDA-ARS, 1925 Linden Drive West, Madison, WI, 53706, USA
,
John Ralph*
a  Department of Energy Great Lakes Bioenergy Research Center and Department of Biochemistry, the Wisconsin Energy Institute, University of Wisconsin, Madison, WI, 53726, USA   Email: [email protected]
› Author Affiliations
The project was funded by Stanford University’s Global Climate and Energy Program (GCEP), with analytical facilities (primarily NMR) funded in part by the DOE Great Lakes Bioenergy Research Center (DOE Office of Science BER DE-FC02-07ER64494).
Further Information

Publication History

Received: 16 February 2018

Accepted after revision: 26 February 2018

Publication Date:
28 March 2018 (online)


Abstract

The first synthesis of nepetoidin B in an overall yield of 17% was achieved in two steps through Baeyer–Villiger oxidation of commercially available 1,5-bis(3,4-dimethoxyphenyl)-1,4-pentadien-3-one with oxone to produce the tetramethylated nepetoidin B, followed by demethylation using boron tribromide.

Supporting Information

 
  • References and Notes

  • 1 Arihara S. Ruedi P. Eugster CH. Helv. Chim. Acta 1975; 58: 447
  • 2 Zhang P. Gao ZP. Gao YJ. Xiao L. Chen RY. Kang J. Zhong Yao Cai 2016; 39: 78
  • 3 Zhong JD. Feng F. Li HZ. Li RT. Journal of Kunming University of Science and Technology (Natural Science Edition) 2013; 38: 75
  • 4 Fraga BM. Gonzalez-Coloma A. Alegre-Gomez S. Lopez-Rodriguez M. Amador LJ. Diaz CE. Phytochemistry 2017; 133: 59
  • 5 Nakanishi T. Nishi M. Inada A. Obata H. Tanabe N. Abe S. Wakashiro M. Chem. Pharm. Bull. 1990; 38: 1772
  • 6 Zhong JD. Feng Y. Li HM. Xia XS. Li RT. Nat. Prod. Res. 2016; 30: 2278
  • 7 Huang ZY. Huang B. Xiao CJ. Dong X. Jiang B. Nat. Prod. Res. 2015; 29: 628
  • 8 Zhou W. Xie H. Xu X. Liang Y. Wei X. J. Funct. Foods 2014; 6: 492
  • 9 Tsai SF. Lee SS. Phytochemistry 2014; 101: 121
  • 10 Banthorpe DV. Bilyard HJ. Watson DG. Phytochemistry 1985; 24: 2677
  • 11 Kubínová R. Svajdlenka E. Schneiderová K. Hanáková Z. Dall’Acqua S. Farsa O. Biochem. Syst. Ecol. 2013; 49: 39
  • 12 Grayer RJ. Eckert MR. Veitch NC. Kite GC. Marin PD. Kokubun T. Simmonds MS. J. Paton AJ. Phytochemistry 2003; 64: 519
  • 13 Wang GC. Li T. Deng FY. Li YL. Ye WC. Bioorg. Med. Chem. Lett. 2013; 23: 1379
  • 14 Li M. Xu L. Li Z. Qian S. Qin M. Biochem. Syst. Ecol. 2013; 49: 144
  • 15 Banthorpe DV. Bilyard HJ. Brown GD. Phytochemistry 1989; 28: 2109
  • 16 Falcao RA. do Nascimento PL. A. de Souza SA. da Silva TM. G. de Queiroz AC. da Matta CB. B. Moreira MS. A. Camara CA. Silva TM. S. Evid. Based Complementary Altern. Med. 2013; ID 460613
  • 17 Murata T. Miyase T. Yoshizaki F. J. Nat. Med. 2011; 65: 385
  • 18 Shirota O. Nagamatsu K. Sekita S. J. Nat. Prod. 2006; 69: 1782
  • 19 Brown GD. Banthorpe DV. Characteristic Secondary Meta­bolism in Tissue Cultures of the Labiatae: Two New Chemotaxonomic Markers . In Advances in Labiate Science . Harley RM. Reynolds T. Atkins S. Royal Botanic Gardens; Kew: 1992: 367
  • 20 Wakashiro M. Abe S. Tanabe N. Obata H. Eur. Pat 0 429 038 A2, 1990
  • 21 Dai J. Sorribas A. Yoshida WY. Williams PG. Phytochemistry 2010; 71: 2168
  • 22 Prisinzano TE. Rothman RB. Chem. Rev. 2008; 108: 1732
  • 23 Sevindik HG. Ozgen U. Atila A. Er HO. Kazaz C. Duman H. Chem. Pharm. Bull. 2015; 63: 720
  • 24 Hanson JR. Sci. Progr. 2010; 93: 171
  • 25 Sumaryono W. Proksch P. Hartmann T. Nimtz M. Wray V. Phytochemistry 1991; 30: 3267
  • 26 Formisano C. Rigano D. Senatore F. Chem. Biodivers. 2011; 8: 1783
  • 27 Wu X. Gao H. Sun W. Yu J. Hu H. Xu Q. Chen X. Phytother. Res. 2017; 31: 1072
  • 28 Odonbayar B. Murata T. Matsumoto N. Batkhuu J. Sasaki K. Mongolian Journal of Chemistry 2016; 17: 14
  • 29 Venuprasad MP. Kandikattu HK. Razack S. Amruta N. Khanum F. Biomed. Pharmacother. 2017; 91: 1
  • 30 Beladjila KA. Cotugno R. Berrehal D. Kabouche Z. De Tommasi N. Braca A. De Leo M. Nat. Prod. Res. 2017; 20: 1
  • 31 Süntar I. Nabavi SM. Barreca D. Fischer N. Efferth T. Phytother. Res. 2018; 32: 185
  • 32 Rinaldi R. Jastrzebshi R. Clough MT. Ralph J. Kennema M. Bruijnincx PC. A. Weckhuysen BM. Angew. Chem. Int. Ed. 2016; 55: 8164
  • 33 Poladura B. Martinez-Castaneda A. Rodriguez-Solla H. Llavona R. Concellon C. del Amo V. Org. Lett. 2013; 15: 2810
  • 34 Synthesis of 2-(3,4-Dihydroxyphenyl)ethenyl-3-(3,4-dihydroxyphenyl)-2-propenoate (1) To a stirred solution of (E,E)-3 (1.341 g, 3.620 mmol, 1.0 equiv) in dry CH2Cl2 (20 mL) under argon was added neat BBr3 (2.09 mL, 21.722 mmol, 6.0 equiv) dropwise at −78 °C. The solution was stirred at the same temperature for another 30 min, at which point the mixture was allowed to warm to 0 °C over the course of 1 h, and then to warm to r.t. over the course of 1 h. After once again cooling the mixture to −78 °C, it was quenched by addition of saturated aqueous NaHCO3 (18 mL) and then allowed to warm to r.t. over 20 min. The mixture was partitioned between EtOAc (120 mL) and H2O (150 mL), and the aqueous layer was extracted with EtOAc (2 x 50 mL). The combined organic layers were washed with brine (50 mL), then dried over anhydrous Na2SO4, and the solution was concentrated in vacuo. The residue was purified by flash column chromatography on silica gel (MeOH/CH2Cl2 10:90) to furnish nepetoidin B, compound 1, as a yellow solid (490 mg, 43%). Rf = 0.58 (MeOH/CH2Cl2 15:85). The ratio of isomers (E,E)-1/(Z,E)-1 is 94:6, as determined by 1H NMR spectroscopic analysis (signals at 5.67 (d, J = 7.4 Hz, H-7) and 6.36 (d, J = 15.8 Hz, H-8) for the (Z,E)-1 and (E,E)-1 isomers, respectively). HPLC Separation of the Isomers of Nepetoidin B [(E,E)-1 and (Z,E)-1] The mixture of the isomers of nepetoidin B [(E,E)-1 94% and (Z,E)-1 6%] obtained from the demethylation of (E,E)-3 was separated by HPLC. To collect a sufficient quantity for 1H and 13C NMR analysis, 1 (12 mg) was dissolved in MeOH (350 μL), and the method described above was run five times using 50 μL injections of the solution. The appropriate fractions were combined and concentrated in vacuo to afford each purified isomer for further analysis. (E,E)-1 (7 mg): 1H NMR (500 MHz, acetone-d 6): δH = 6.36 (d, J = 15.8 Hz, H-8), 6.38 (d, J = 12.8 Hz, H-7'), 6.77−6.78 (m, H-6' and H-5), 6.89 (d, J = 8.2 Hz, H-5'), 6.93 (d, J = 1.8 Hz, H-2), 7.11 (dd, J = 8.2, 2.1 Hz, H-6), 7.22 (d, J = 2.1 Hz, H-2'), 7.68 (d, J = 15.9 Hz, H-7), 7.81 (d, J = 12.8 Hz, H-8'), 8.21 (br. s, 4 x OH). The obtained NMR spectroscopic data for (E,E)-1 matched literature values.10,15,19 (Z,E)-1 (0.3 mg): 1H NMR (500 MHz, acetone-d 6): δH = 5.67 (d, J = 7.4 Hz, H-7'), 6.51 (d, J = 15.9 Hz, H-8), 6.81 (d, J = 8.2 Hz, H-5'), 6.90 (d, J = 8.2 Hz, H-5), 7.00 (dd, J = 8.2, 2.1 Hz, H-6'), 7.13 (dd, J = 8.2, 2.1 Hz, H-6), 7.26 (d, J = 2.0 Hz, H-2), 7.26 (d, J = 7.3 Hz, H-8'), 7.37 (d, J = 2.1 Hz, H-2'), 7.73 (d, J = 15.9 Hz, H-7), 8.05 (br. s, 4 x OH).1,10,15,19,30