Synthesis 2018; 50(19): 3931-3935
DOI: 10.1055/s-0036-1591587
paper
© Georg Thieme Verlag Stuttgart · New York

A Simple Route to Benzo[b]xanthene-6,11,12-triones: Synthesis of Bikaverin

Dmitry N. Pelageev
a   G. B. Elaykov Pacific Institute of Bioorganic Chemistry, Prospect 100 let Vladivostoku 159, 690022 Vladivostok, Russian Federation   Email: anufriev@piboc.dvo.ru
b   School of Natural Sciences, Far Eastern Federal University, Sukhanova St. 8, 690950 Vladivostok, Russian Federation
,
Ksenia L. Borisova
a   G. B. Elaykov Pacific Institute of Bioorganic Chemistry, Prospect 100 let Vladivostoku 159, 690022 Vladivostok, Russian Federation   Email: anufriev@piboc.dvo.ru
,
Victor Ph. Anufriev*
a   G. B. Elaykov Pacific Institute of Bioorganic Chemistry, Prospect 100 let Vladivostoku 159, 690022 Vladivostok, Russian Federation   Email: anufriev@piboc.dvo.ru
› Author Affiliations
Further Information

Publication History

Received: 23 April 2018

Accepted after revision: 24 April 2018

Publication Date:
09 July 2018 (online)


Abstract

A three-step procedure for the synthesis of 1H-benzo[b]xanthene-6,11,12-trione derivatives is described. The procedure involves the halogenation of 12-(3-hydroxy-1,4-naphthoquinon-2-yl)-6H-benzo[b]xanthene-6,11-(12H)-diones, followed by treatment with water under aeration. In this manner, bikaverin, a cytotoxic metabolite isolated from several species of the fungal genera Gibberella, Fusarium, and Mycogone, was synthesised.

Supporting Information

 
  • References

    • 1a Thomson RH. Naturally Occurring Quinones . 2nd ed. Academic Press; New York: 1971
    • 1b Thomson RH. Naturally Occurring Quinones . 3rd ed. Chapman & Hall; London: 1987
    • 1c Thomson RH. Naturally Occurring Quinones . 4th ed. Blackie Academic and Professional; London: 1997
    • 2a Kjaer D. Pedersen C. Bu’Lock JD. Smith JR. J. Chem. Soc. C 1971; 2792
    • 2b Brewer D. Arsenault GP. Wright JL. C. Vining LC. J.Antibiot. 1973; 26: 778
    • 2c Terashima N. Ishida M. Hamasaki T. Hatsuda Y. Phytochemistry 1972; 11: 2280
    • 2d Son SW. Kim HY. Choi GJ. Lim HK. Jang KS. Lee SO. Lee S. Sung ND. Kim J.-C. J. Appl. Microbiol. 2008; 104: 692
    • 3a Robinson PM. Park D. McClure WK. Trans. Br. Mycol. Soc. 1969; 52: 447
    • 3b Balan J. Fuska J. Kuhr I. Kuhrova V. Folia Microbiol. 1970; 15: 479
    • 3c Fuska J. Ivanitskaya LP. Makukho LV. Volkova LY. Antihiotiki (Moscow) 1974; 19: 890
    • 3d Kwon HR. Son SW. Han HR. Choi GJ. Jang KS. Choi YH. Lee S. Do SN. Kim J.-C. Plant Pathol. J. 2008; 23: 318
    • 3e Nirmaladevi D. Venkataramana M. Chandranayaka S. Ramesha A. Jameel NM. Srinivas C. Cell. Mol. Neurobiol. 2014; 34: 973
  • 4 Bockholt H. Udvarnoki G. Rohr J. Macek U. Beale JM. Floss HG. J. Org. Chem. 1994; 59: 2064

    • For example, see:
    • 5a Hauser FM. Hewawasam P. Baghdanov VM. J. Org. Chem. 1988; 53: 223
    • 5b De Koning CB. Giles RG. F. Engelhardt LM. White AH. J. Chem. Soc., Perkin Trans. 1 1988; 3209
    • 5c Bekaert A. Andrieux J. Plat M. Tetrahedron Lett. 1992; 33: 2805
    • 5d Deshpande VH. Khan RA. Ayyangar NR. Synth. Commun. 1993; 23: 2677
  • 6 Pelageev DN. Anufriev VPh. Russ. Chem. Bull. Int. Ed. 2008; 57: 2335
    • 7a Tchizhova AYa. Anufriev VPh. Glazunov VP. Denisenko VA. Moiseenko OP. Synth. Commun. 1999; 29: 3971
    • 7b Tchizhova AYa. Anufriev VPh. Glazunov VP. Denisenko VA. Russ. Chem. Bull. Int. Ed. 2000; 49: 466
  • 8 For example, see: Pokhilo ND. Yakubovskaya AYa. Glazunov VP. Russ. J. Org. Chem. 2011; 47: 504
  • 9 Huber F. Schmeisser M. In Handbuch der Praparativen Anorganischen Chemie . Brauer G. Ferdinand Enke Verlag; Stuttgart: 1975