Synlett 2018; 29(09): 1171-1175
DOI: 10.1055/s-0036-1591775
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Tandem Multi-Component Approach to 1,3-Oxazines at Room Temperature by Cross-Dehydrogenative Coupling Using Methanol as C1 Feedstock

Paran J. Borpatra
Department of Applied Sciences, GUIST, Gauhati University, Guwahati 781014, Assam, India   Email: [email protected]   Email: [email protected]
,
Mohit L. Deb*
Department of Applied Sciences, GUIST, Gauhati University, Guwahati 781014, Assam, India   Email: [email protected]   Email: [email protected]
,
Pranjal K. Baruah*
Department of Applied Sciences, GUIST, Gauhati University, Guwahati 781014, Assam, India   Email: [email protected]   Email: [email protected]
› Author Affiliations
M.L.D. is thankful to Science and Engineering Research Board (SERB), India (Grant No. SB/FT/CS-073/2014) for financial support under Fast Track Scheme. P.K.B. is thankful to DST, India, (Grant No. SB/FT/CS-100/2012) for financial support. P.J.B. thanks AICTE for a research fellowship.
Further Information

Publication History

Received: 25 January 2018

Accepted after revision: 13 February 2018

Publication Date:
20 March 2018 (online)


Abstract

A copper(II)-catalyzed multi-component one-pot approach for the synthesis of 1,3-oxazines at room temperature is reported here. Methanol is used as the solvent as well as the carbon source. The methylene carbon of the oxazine product comes from methanol via formaldehyde. tert-Butyl hydroperoxide is used as the oxidant. The reaction uses an environmentally benign metal catalyst and oxidant. No inert atmosphere or precaution is required for the reaction. Most importantly, the reaction avoids the use of carcinogenic formaldehyde.

Supporting Information

 
  • References

    • 1a Li C.-J. Trost BM. Proc. Natl. Acad. Sci. U. S. A. 2008; 105: 13197
    • 1b Sheldon RA. Chem. Soc. Rev. 2012; 41: 1437
    • 2a Ganesh I. Renew. Sustain. Energy Rev. 2014; 31: 221
    • 2b Shuttleworth PS. De bruyn M. Parker HL. Hunt AJ. Budarin VL. Matharu AS. Clark JH. Green Chem. 2014; 16: 573
    • 2c Goeppert A. Czaun M. Jones J.-P. Prakash GK. S. Olah GA. Chem. Soc. Rev. 2014; 43: 7995
    • 2d Du X.-L. Jiang Z. Su DS. Wang J.-Q. ChemSusChem 2016; 9: 322
    • 2e Serrano-Ruiz JC. West RM. Dumesic JA. Annu. Rev. Chem. Biomol. Eng. 2010; 1: 79
    • 2f Lanzafame P. Centi G. Perathoner S. Chem. Soc. Rev. 2014; 43: 7562
    • 2g Shamsul NS. Kamarudin SK. Rahman NA. Kofli NT. Renew. Sustain. Energy Rev. 2014; 33: 578
    • 2h Hasegawa F. Yokoyama S. Imou K. Bioresour. Technol. 2010; 101: 109
  • 3 Olah GA. Angew. Chem. Int. Ed. 2005; 44: 2636
  • 4 Lamoureux G. Agüero C. ARKIVOC 2009; (i): : 251
    • 5a Eschweiler W. Ber. Dtsch. Chem. Ges. 1905; 38: 880
    • 5b Clarke HT. Gillespie HB. Weisshaus SZ. J. Am. Chem. Soc. 1933; 55: 4571
    • 6a Chakrabarti K. Maji M. Panja D. Paul B. Shee S. Das GK. Kundu S. Org. Lett. 2017; 19: 4750
    • 6b Li Y. Li H. Junge H. Beller M. Chem. Commun. 2014; 50: 14991
    • 6c Shen D. Poole DL. Shotton CC. Kornahrens AF. Healy MP. Donohoe TJ. Angew. Chem. Int. Ed. 2015; 54: 1642
    • 6d Chen S.-J. Lu G.-P. Cai C. RSC Adv. 2015; 5: 70329
    • 6e Moran J. Preetz A. Mesch RA. Krische MJ. Nat. Chem. 2011; 3: 287
    • 6f Natte K. Neumann H. Beller M. Jagadeesh RV. Angew. Chem. Int. Ed. 2017; 56: 6384
  • 7 Kim SH. Hong SH. Org. Lett. 2016; 18: 212
    • 8a Kim S. Hong SY. Adv. Synth. Catal. 2017; 359: 798
    • 8b Ogawa S. Obora Y. 2014; 50: 2491
    • 8c Chan LK. M. Poole DL. Shen D. Healy MP. Donohoe TJ. Angew. Chem. Int. Ed. 2014; 53: 761
  • 9 Gogoi N. Begum T. Dutta S. Bora U. Gogoi PK. RSC Adv. 2015; 5: 95344
    • 10a Pedersen OS. Pedersen EB. Synthesis 2000; 479
    • 10b Gomez PG. Pabon HP. Carvajal MA. Rincon JM. Rev. Colomb. Cienc. Quim. Farm. 1985; 8: 15
    • 10c Cocuzza AJ. Chidester DR. Cordova BC. Jeffrey S. Parsons RL. Bacheler LT. Viitanen SE. Trainor GL. Ko SS. Bioorg. Med. Chem. Lett. 2001; 11: 1177
    • 10d Waisser K. Gregor K. Kubicova L. Klimesova V. Kunes J. Machacek M. Kaustova J. Eur. J. Med. Chem. 2000; 35: 733
    • 10e Benameur L. Bouaziz Z. Nebois P. Bartoli MH. Boitard M. Fillion H. Chem. Pharm. Bull. 1996; 44: 605
    • 10f Chylinska JB. Urbanski T. Mordarski M. J. Med. Chem. 1963; 6: 484
    • 10g Mathew BP. Kumar A. Sharma S. Shula PK. Nath M. Eur. J. Med. Chem. 2010; 45: 1502
    • 10h Petrlikova E. Waisser K. Divisova H. Husakova P. Vrabcova P. Kunes J. Kolar K. Stolarikova J. Bioorg. Med. Chem. 2010; 18: 8178
    • 10i Bouaziz Z. Riondel J. Mey A. Berlion M. Villard J. Filliond H. Eur. J. Med. Chem. 1991; 26: 469
    • 10j Olianas MC. Onali P. Life Sci. 1999; 65: 2233
    • 10k Johns BA. Weatherhead JG. US Patent WO2010011812 A1, 2010
    • 10l Arai AC. Kessler M. Rogers G. Lynch G. Mol. Pharmacol. 2000; 58: 802
    • 10m Böhme TM. Augelli-Szafran CE. Hussein H. Pugsley T. Serpa K. Schwarz RD. J. Med. Chem. 2002; 45: 3094
    • 11a Zhang P. Terefenko EA. Fensome A. Zhang Z. Zhu Y. Cohen J. Winneker R. Wrobel J. Yardley J. Bioorg. Med. Chem. Lett. 2002; 12: 787
    • 11b Joyce JN. Presgraves S. Renish L. Borwege S. Osredkar DH. Replogle M. PazSoldan M. Millan MJ. Exp. Neurol. 2003; 184: 93
    • 12a Xuan J. Feng Z.-J. Duan S.-W. Xiao W.-J. RSC Adv. 2012; 2: 4065
    • 12b Katritzky AR. Xu Y.-J. Jain R. J. Org. Chem. 2002; 67: 8234
    • 12c Mathew BP. Nath M. J. Heterocycl. Chem. 2009; 46: 1003
    • 12d Kienzle F. Tetrahedron Lett. 1983; 24: 2213
    • 12e Pandey G. Kumaraswamy G. Reddy PY. Tetrahedron 1992; 48: 8295
    • 12f Okimoto M. Ohashi K. Yamamori H. Nishikawa S. Hoshi M. Yoshida T. Synthesis 2012; 44: 1315
    • 12g Chen C.-K. Hortmann AG. Marzabadi MR. J. Am. Chem. Soc. 1988; 110: 4829
    • 12h Mathis CL. Gist BM. Frederickson CK. Midkiff KM. Marvin CC. Tetrahedron Lett. 2013; 54: 2101
    • 12i Tang Z. Zhu Z. Xia Z. Liu H. Chen J. Xia W. Ou X. Molecules 2012; 17: 8174
    • 13a Zhang C. Tang C. Jiao N. Chem. Soc. Rev. 2012; 41: 3464
    • 13b Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 13c Anastas P. Eghbali N. Chem. Soc. Rev. 2010; 39: 301
    • 13d Yoo W.-J. Li C.-J. Top. Curr. Chem. 2010; 292: 281
    • 13e Yeung CS. Dong VM. Chem. Rev. 2011; 111: 1215
    • 13f Klussmann M. Sureshkumar D. Synthesis 2011; 353
    • 13g Shi Z. Glorius F. Angew. Chem. Int. Ed. 2012; 51: 9220
    • 13h Li Z. Bohle DS. Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 8928
    • 13i Guo S.-R. Kumar PS. Yang M. Adv. Synth. Catal. 2017; 359: 2
    • 13j Lakshman MK. Vuram PK. Chem. Sci. 2017; 8: 5845
    • 13k Yi H. Zhang G. Wang H. Huang Z. Wang J. Singh AK. Lei A. Chem. Rev. 2017; 117: 9016
    • 14a Deb ML. Dey SS. Bento I. Barros MT. Maycock CD. Angew. Chem. Int. Ed. 2013; 52: 9791
    • 14b Mahato S. Haldar S. Jana CK. Chem. Commun. 2014; 50: 332
    • 14c Gupta KS. V. Ramana DV. Vinayak B. Sridhar B. Chandrasekharam M. New J. Chem. 2016; 40: 6389
    • 14d Deb ML. Borpatra PJ. Saikia PJ. Baruah PK. Synlett 2017; 28: 461
    • 14e Deb ML. Pegu CD. Borpatra PJ. Saikia PJ. Baruah PK. Green Chem. 2017; 19: 4036
    • 15a Ganem B. Acc. Chem. Res. 2009; 42: 463
    • 15b Touré BB. Hall DG. Chem. Rev. 2009; 109: 4439
    • 15c Ruijter E. Scheffelaar R. Orru RV. A. Angew. Chem. Int. Ed. 2011; 50: 6234
    • 15d D’Souza DM. Müller TJ. J. Chem. Soc. Rev. 2007; 36: 1095
    • 15e Climent MJ. Corma A. Iborra S. RSC Adv. 2012; 2: 16
    • 16a Shiri M. Chem. Rev. 2012; 112: 3508
    • 16b Dömling A. Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 16c Dömling A. Chem. Rev. 2006; 106: 17
    • 16d Dömling A. Huang Y. Synthesis 2010; 2859
    • 16e Tsepalov VF. Zh. Fiz. Khim. 1961; 35: 1691
    • 16f Strecker A. Liebigs Ann. Chem. 1850; 75: 27
  • 17 Crystallographic data for compound 3a has been deposited with CCDC 1812944 and can be obtained free of charge from the Cambridge Crystallographic Data Centre, www.ccdc.cam.ac.uk/ conts/retrieving.html.
  • 18 Representative Procedure for the Synthesis of 3a 2-Naphthol (1a, 1 mmol, 144 mg), tetrahydroisoquinoline (2a, 1 mmol, 133 mg), and methanol (5 mL) were combined in a round-bottom flask. Cu(OAc)2 . H2O (10 mol%, 20 mg) and TBHP (70% in H2O, 2 mmol, 257 mg) were added and the reaction mixture was stirred at r.t. for 15 h. Progress of the reaction was monitored by TLC. Removal of the solvent under vacuum and purification by column chromatography (100–200 mesh silica gel, hexane/ethyl acetate) afforded product 3a as a white solid. Yield: 68% (195 mg). 1H NMR (300 MHz, CDCl3): δ = 7.79 (d, J = 7.9 Hz, 1 H), 7.69–7.64 (m, 2 H), 7.53–7.45 (m, 2 H), 7.40–7.30 (m, 3 H), 7.23 (d, J = 7.9 Hz, 1 H), 7.07 (d, J = 8.7 Hz, 1 H), 5.80 (s, 1 H), 4.81 (d, J = 16.3 Hz, 1 H), 4.30 (d, J = 16.6 Hz, 1 H), 3.49–3.41 (m, 1 H), 3.17–3.12 (m, 1 H), 2.97–2.92 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 151.7, 134.9, 133.0, 131.5, 129.0, 128.9, 128.8, 128.5, 128.2, 126.5, 126.3, 123.5, 121.2, 118.8, 111.1, 86.9, 51.3, 45.2, 29.2. HRMS (ESI): m/z calcd for C20H17NO [M+H]+: 288.1388; found: 288.1389.