Synthesis 2018; 50(06): 1293-1300
DOI: 10.1055/s-0036-1591851
paper
© Georg Thieme Verlag Stuttgart · New York

A Practical Synthesis of 5-Substituted 1H-Tetrazoles from Aldoximes Employing the Azide Anion from Diphenyl Phosphorazidate

Kotaro Ishihara
a   Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya 468-8502, Japan   Email: matsugi@meijo-u.ac.jp
,
Mayumi Kawashima
a   Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya 468-8502, Japan   Email: matsugi@meijo-u.ac.jp
,
Takatoshi Matsumoto
b   Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aobaku, Sendai 980-8577, Japan
,
Takayuki Shioiri
a   Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya 468-8502, Japan   Email: matsugi@meijo-u.ac.jp
,
Masato Matsugi*
a   Faculty of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya 468-8502, Japan   Email: matsugi@meijo-u.ac.jp
› Author Affiliations
This work was supported by JSPS Grant-in-Aid for Scientific Research (C), 26450145, and Prof. Y. Uozumi’s JST-ACCEL program (JPMJAC1401).
Further Information

Publication History

Received: 13 September 2017

Accepted after revision: 07 November 2017

Publication Date:
12 December 2017 (online)


Abstract

5-Substituted 1H-tetrazoles were effectively synthesized from aldoximes and diphenyl phosphorazidate (DPPA) under reflux conditions in xylenes. Various aldoximes underwent the cycloaddition reaction to afford the corresponding 5-substituted 1H-tetrazoles in short reaction times and in good yields. Chiral aldoximes derived from amino acids also gave aminotetrazoles with almost no racemization.

Supporting Information

 
  • References

  • 1 Butler RN. In Comprehensive Heterocyclic Chemistry . Vol. 4. Katritzky AR. Rees CW. Scriven EF. V. Pergamon; Oxford: 1996: 674
    • 2a Herr RJ. Bioorg. Med. Chem. 2002; 10: 3379
    • 2b McKie HA. Friedland S. Hof F. Org. Lett. 2008; 10: 4653
    • 3a Chiu AT. Dunica JV. McCall DE. Wong PC. Price WA. Thoolen MJ. Carini DJ. Johnson AL. Timmermans PB. J. Pharmacol. Exp. Ther. 1989; 250: 867
    • 3b Buehlmayer P. Criscione L. Fuhrer W. Furet P. De Gasparo M. Stutz S. Whitebread S. J. Med. Chem. 1991; 34: 3105
    • 3c Kinugawa K. Kohmoto O. Takahashi T. Serizawa T. Eur. J. Pharmacol. 1993; 235: 313
    • 3d Shibouta Y. Inada Y. Ojima M. Wada T. Noda M. Sanada T. Kubo K. Kohara Y. Naka T. Nishikawa K. J. Pharmacol. Exp. Ther. 1993; 266: 114
    • 3e Bourdonnec BL. Meulon E. Yous S. Goossens J. Houssin R. Hénichart J. J. Med. Chem. 2000; 43: 2685
    • 3f Kurup A. Garg R. Carini DJ. Hansch C. Chem. Rev. 2001; 101: 2727
    • 3g Ostrovskii VA. Trifonov RE. Popova EA. Russ. Chem. Bull. 2012; 61: 768
    • 4a Nohara A. Kuriki H. Saijo T. Sugihara H. Kanno M. Sanno Y. J. Med. Chem. 1977; 20: 141
    • 4b Ford RE. Knowles P. Lunt E. Marshall SM. Penrose AJ. Ramsden CA. Summers AJ. H. Walker JL. Wrigth DE. J. Med. Chem. 1986; 29: 538
    • 4c Peet NP. Baugh LE. Sunder S. Lewis JE. Matthews EH. Olberding EL. Shah DN. J. Med. Chem. 1986; 29: 2403
    • 5a Andrus A. Partridge B. Heck JV. Christensen BG. Tetrahedron Lett. 1984; 25: 911
    • 5b Toney JH. Fitzgerald PM. D. Grover-Sharma N. Olson SH. May WJ. Sundelof JG. Vanderwall DE. Cleary KA. Grant SK. Wu JK. Kozarich JW. Pompliano DL. Hammond GG. Chem. Biol. 1998; 5: 185
    • 6a Kumar CN. S. S. P. Parida DK. Santhoshi A. Kota AK. Sridhar B. Rao VJ. MedChemComm 2011; 2: 486
    • 6b Dolušić E. Larrieu P. Moineaux L. Stroobant V. Pilotte L. Colau D. Pochet L. Eynde B. Masereel B. Wouters J. Frédérick R. J. Med. Chem. 2011; 54: 5320
  • 7 Vieira E. Huwyler J. Jolidon S. Knoflach F. Mutel V. Wichmann J. Bioorg. Med. Chem. Lett. 2005; 15: 4628
    • 8a Grayson BT. Webb JD. Deveson MR. Blackman PG. Pestic. Sci. 1990; 28: 123
    • 8b Sandmann G. Schneider C. Boger P. Z. Naturforsch., C 1996; 51: 534
    • 9a Huisgen R. Sauer J. Sturm HJ. Markgraf JH. Chem. Ber. 1960; 93: 2106
    • 9b Gaponik PN. Voitekhovich SV. Ivashkevich OA. Russ. Chem. Rev. 2006; 75: 507
    • 10a Koldobskii GL. Ostrovskii VA. Usp. Khim. 1994; 63: 847
    • 10b Ostrovskii VA. Pevzner MS. Kofmna TP. Shcherbinin MB. Tselinskii IV. In Targets in Heterocyclic Systems. Chemistry and Properties. Vol. 3. Attanasi OA. Spinelli D. Italian Society of Chemistry;   Camerino: 1999: 467
  • 11 Roh J. Vávrová K. Hrabálek A. Eur. J. Org. Chem. 2012; 6101
  • 12 Yoneyama H. Usami Y. Komeda S. Harusawa S. Synthesis 2013; 45: 1051
  • 13 Aureggi V. Sedelmeier G. Angew. Chem. Int. Ed. 2007; 46: 8440
  • 14 Treitler DS. Leung S. Lindrud M. Org. Process Res. Dev. 2017; 21: 460
    • 15a Gawande SD. Raihan MJ. Zanwar MR. Kavala V. Janreddy D. Kuo C. Chen M. Kuo T. Yao C. Tetrahedron 2013; 69: 1841
    • 15b Yapuri U. Palle S. Gudaparthi O. Narahari SR. Rawat DK. Mukkanti K. Vantikommu J. Tetrahedron Lett. 2013; 54: 4732
    • 15c Jin T. Kitahara F. Kamjio S. Yamamoto Y. Tetrahedron Lett. 2008; 49: 2824
    • 15d Sreedhar B. Suresh Kumar A. Yada D. Tetrahedron Lett. 2011; 52: 3565
    • 16a Bonnamour J. Bolm C. Chem. Eur. J. 2009; 15: 4543
    • 16b Nasrollahzadeh M. Bayat Y. Habibi D. Moshaee S. Tetrahedron Lett. 2009; 50: 4435
    • 18a Matthews DP. Green JE. Shuker AJ. J. Comb. Chem. 2000; 2: 19
    • 18b Nanjundaswamy HM. Abrahamse H. Heterocycles 2014; 89: 2137
  • 19 Venkateshwarlu G. Premalatha A. Rajanna KC. Saiprakash PK. Synth. Commun. 2009; 39: 4479
    • 20a Kumar A. Narayanan R. Shechter H. J. Org. Chem. 1996; 61: 4462
    • 20b Prajapti SK. Nagarsenkar A. Babu BN. Tetrahedron Lett. 2014; 55: 3507
  • 21 Sivaguru P. Theerthagiri P. Lalitha A. Tetrahedron Lett. 2015; 56: 2203
  • 22 Kumar S. Dubey S. Saxena N. Awasthi S. Tetrahedron Lett. 2014; 55: 6034
  • 23 Amantini D. Beleggia R. Fringuelli F. Pizzo F. Vaccoro L. J. Org. Chem. 2004; 69: 2896
  • 24 He J. Li B. Chen F. Xu Z. Yin G. J. Mol. Catal. A: Chem. 2009; 304: 135
  • 25 Meshram GA. Deshpande SS. Wagh PA. Vala VA. Tetrahedron Lett. 2014; 55: 3557
  • 26 Das B. Reddy CR. Kumar DN. Krishnaiah M. Narender R. Synlett 2010; 391
  • 27 Lang L. Li B. Liu W. Jiang L. Xu Z. Yin G. Chem. Commun. 2010; 46: 448
  • 28 Kantam ML. Shiva Kumar KB. Raja KP. J. Mol. Catal. A: Chem. 2006; 247: 186
  • 29 Shelkar R. Singh A. Nagarkar J. Tetrahedron Lett. 2013; 54: 106
  • 30 Rama V. Kanagaraj K. Pitchumani K. J. Org. Chem. 2011; 76: 9090
  • 31 Chermahini AN. Teimouri A. Momenbeik F. Zarei A. Dalirnasab Z. Ghaedi A. Roosta M. J. Heterocycl. Chem. 2010; 47: 913
    • 32a Patil UB. Kumthekar KR. Nagarkar JM. Tetrahedron Lett. 2012; 53: 3706
    • 32b Akula RK. Adimulam CS. Gangaram S. Kengiri R. Banda N. Pamulaparthy SR. Lett. Org. Chem. 2014; 11: 440
    • 32c Heravi MM. Fazeli A. Oskooie HA. Beheshtiha YS. Valizadeh H. Synlett 2012; 23: 2927
    • 32d Abdollahi-Alibeik M. Moaddeli A. New J. Chem. 2015; 39: 2116
    • 32e Kazemnejadi M. Sardarian AR. RSC Adv. 2016; 6: 91999
  • 33 Guggilapu SD. Prajapti SK. Nagarsenkar A. Gupta KK. Babu BN. Synlett 2016; 27: 1241
    • 34a Shioiri T. Ninomiya K. Yamada S. J. Am. Chem. Soc. 1972; 94: 6203
    • 34b For a review, see: Shioiri T. TCIMAIL 2007; 134: 2
    • 34c Shioiri T. In New Horizons of Process Chemistry –Scalable Reactions and Technologies . Tomioka K. Shioiri T. Sajiki H. Springer Nature; Singapore: 2017: 131-145
  • 35 Ishihara K. Kawashima M. Shioiri T. Matsugi M. Synlett 2016; 27: 2225
    • 36a For a review, see: Shioiri T. Wako Junyaku Jiho 2005; 73: 6
    • 36b Shioiri T. Yamada S. Chem. Pharm. Bull. 1974; 22: 855
    • 36c Mizuno M. Shioiri T. Chem. Commun. 1997; 2165
    • 36d Ishihara K. Hamamoto H. Matsugi M. Shioiri T. Tetrahedron Lett. 2015; 56: 3169
  • 37 Tang H. Zhang Z. Cong C. Zhang K. Russ. J. Org. Chem. 2009; 45: 559
  • 38 Cousaert N. Willand N. Gesquière J. Tartar A. Déprez B. Deprez-Poulain R. Tetrahedron Lett. 2008; 49: 2743
  • 39 Zhu Y. Ren Y. Cai C. Helv. Chim. Acta 2009; 92: 171
  • 40 Lenda F. Guenoun F. Tazi B. Iarbi NB. Allouchi H. Martinez J. Lamaty F. Eur. J. Org. Chem. 2005; 326
  • 41 Behloul C. Bouchelouche K. Hadji Y. Benseghir S. Guijarro D. Nájera C. Yus M. Synthesis 2016; 48: 2455