Synthesis 2018; 50(05): 1123-1132
DOI: 10.1055/s-0036-1591873
paper
© Georg Thieme Verlag Stuttgart · New York

Consecutive Multicomponent Reactions: Synthesis of 3-Acyl-4-alkynyl-Substituted 1,3-Thiazolidines

Torben Schlüter
Institut für Chemie (IfC), Carl von Ossietzky Universität Oldenburg, P.O. Box 2503, 26111 Oldenburg, Germany   Email: Juergen.martens@uni-oldenburg.de
,
Nils Frerichs
Institut für Chemie (IfC), Carl von Ossietzky Universität Oldenburg, P.O. Box 2503, 26111 Oldenburg, Germany   Email: Juergen.martens@uni-oldenburg.de
,
Marc Schmidtmann
Institut für Chemie (IfC), Carl von Ossietzky Universität Oldenburg, P.O. Box 2503, 26111 Oldenburg, Germany   Email: Juergen.martens@uni-oldenburg.de
,
Jürgen Martens*
Institut für Chemie (IfC), Carl von Ossietzky Universität Oldenburg, P.O. Box 2503, 26111 Oldenburg, Germany   Email: Juergen.martens@uni-oldenburg.de
› Author Affiliations
Further Information

Publication History

Received: 09 October 2017

Accepted after revision: 30 November 2017

Publication Date:
11 January 2018 (online)


These authors contributed equally to this work.

Abstract

This work describes the synthesis of compounds containing thiazolidine and propargylamidic motifs. Their preparation follows a synthetic route containing two multicomponent reactions. First, the Asinger four-component reaction is used to prepare 3-thiazolines and 3-oxazolines. Secondly, these heterocyclic imines are converted into propargylamides by a copper-catalyzed three-component reaction using acyl chlorides and terminal alkynes. The synthetic route is characterized by mild conditions and many functional groups are tolerated. The formation of an unexpected α-alkynoxyamide is also presented.

Supporting Information

 
  • References

  • 1 Swithenbank C. McNulty PJ. Viste KL. J. Agric. Food Chem. 1971; 19: 417
  • 2 Arkona C. Rademann J. Angew. Chem. Int. Ed. 2013; 52: 8210 ; Angew. Chem. 2013, 125, 8368
  • 3 Moon MW. Chidester CG. Heier RF. Morris JK. Collins RJ. Russell RR. Francis JW. Sage GP. Sethy VH. J. Med. Chem. 1991; 34: 2314
    • 4a Nicolaou KC. Hwang CK. Smith AL. Wendeborn SV. J. Am. Chem. Soc. 1990; 112: 7416
    • 4b Porco JA. Schoenen FJ. Stout TJ. Clardy J. Schreiber SL. J. Am. Chem. Soc. 1990; 112: 7410
    • 5a Grigg R. Loganathan V. Sridharan V. Stevenson P. Sukirthalingam S. Worakun T. Tetrahedron 1996; 52: 11479
    • 5b v. Wachenfeldt H. Paulsen F. Sundin A. Strand D. Eur. J. Org. Chem. 2013; 4578
    • 5c Raikar SN. Malinakova HC. J. Org. Chem. 2013; 78: 3832
    • 5d Arcadi A. Cacchi S. Cascia L. Fabrizi G. Marinelli F. Org. Lett. 2001; 3: 2501
  • 6 D’Souza DM. Rominger F. Müller TJ. J. Angew. Chem. Int. Ed. 2005; 44: 153 ; Angew. Chem. 2005, 117, 156
  • 7 Ritter JJ. Minieri PP. J. Am. Chem. Soc. 1948; 70: 4045
  • 8 Bloch R. Chem. Rev. 1998; 98: 1407
    • 9a Wei C. Li C.-J. J. Am. Chem. Soc. 2002; 124: 5638
    • 9b Fischer C. Carreira EM. Org. Lett. 2001; 3: 4319
    • 9c Li C.-J. Wei C. Chem. Commun. 2002; 268
  • 10 Colombo F. Benaglia M. Orlandi S. Usuelli F. Celentano G. J. Org. Chem. 2006; 71: 2064
  • 11 Black DA. Arndtsen BA. Org. Lett. 2004; 6: 1107

    • For further reviews, see:
    • 12a Dömling A. Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 12b Dömling A. Chem. Rev. 2006; 106: 17
    • 12c Biggs-Houck JE. Younai A. Shaw JT. Curr. Opin. Chem. Biol. 2010; 14: 371
    • 12d de Graaff C. Ruijter E. Orru RV. A. Chem. Soc. Rev. 2012; 41: 3969
    • 13a Brauch S. Gabriel L. Westermann B. Chem. Commun. 2010; 46: 3387
    • 13b Khan AT. Musawwer Khan M. Tetrahedron Lett. 2011; 52: 3455
    • 13c Kröger D. Stalling T. Martens J. Synthesis 2016; 4189
    • 13d Kröger D. Franz M. Schmidtmann M. Martens J. Org. Lett. 2015; 17: 5866
  • 14 Asinger F. Offermanns H. Angew. Chem. Int. Ed. 1967; 6: 907 ; Angew. Chem. 1967, 79, 953
    • 15a Martens J. Offermanns H. Scherberich P. Angew. Chem. Int. Ed. 1981; 20: 668 ; Angew. Chem. 1981, 93, 680
    • 15b Brockmeyer F. Kröger D. Stalling T. Ullrich P. Martens J. Helv. Chim. Acta 2012; 95: 1857
    • 16a Fleming A. Br. J. Exp. Pathol. 1929; 10: 226
    • 16b Fan HJ. Paternotte I. Vermander M. Li K. Beaujean M. Scorneaux B. Dumont P. Osinski P. Claesen M. Tulkens PM. Sonveaux E. Bioorg. Med. Chem. Lett. 1997; 7: 3107
    • 16c Nottingham M. Bethel CR. Pagadala SR. R. Harry E. Pinto A. Lemons ZA. Drawz SM. van den Akker F. Carey PR. Bonomo RA. Buynak JD. Bioorg. Med. Chem. Lett. 2011; 21: 387
    • 17a Madivada LR. Anumala RR. Gilla G. Alla S. Charagondla K. Kagga M. Bhattacharya A. Bandichhor R. Org. Process Res. Dev. 2009; 13: 1190
    • 17b Lohray BB. Bhushan V. Rao BP. Madhavan GR. Murali N. Rao KN. Reddy AK. Rajesh BM. Reddy PG. Chakrabarti R. Vikramadithyan RK. Rajagopalan R. Mamidi RN. V. S. Jajoo HK. Subramaniam S. J. Med. Chem. 1998; 41: 1619
  • 18 Weber M. Jakob J. Martens J. Liebigs Ann. Chem. 1992; 1
    • 19a Brockmeyer F. van Gerven D. Saak W. Martens J. Synthesis 2014; 46: 1603
    • 19b Brockmeyer F. Schoemaker R. Schmidtmann M. Martens J. Org. Biomol. Chem. 2014; 12: 5168
    • 19c Brockmeyer F. Morosow V. Martens J. Org. Biomol. Chem. 2015; 13: 3341
    • 19d Kröger D. Schlüter T. Fischer M. Geibel I. Martens J. ACS Comb. Sci. 2015; 17: 202
    • 20a Singh MS. Chowdhury S. RSC Adv. 2012; 2: 4547
    • 20b Metzger JO. Angew. Chem. Int. Ed. 1998; 37: 2975 ; Angew. Chem. 1998, 110, 3145
    • 20c Kumar A. Gupta MK. Kumar M. Green Chem. 2012; 14: 290
    • 20d Gawande MB. Rathi AK. Nogueira ID. Varma RS. Branco PS. Green Chem. 2013; 15: 1895
  • 21 Kazem Shiroodi R. Dudnik AS. Gevorgyan V. J. Am. Chem. Soc. 2012; 134: 6928
  • 22 Krause L. Herbst-Irmer R. Sheldrick GM. Stalke D. J. Appl. Crystallogr. 2015; 48: 3
  • 23 Sheldrick GM. Acta Crystallogr. C 2015; 71: 3