Synlett 2018; 29(11): 1415-1420
DOI: 10.1055/s-0036-1591958
synpacts
© Georg Thieme Verlag Stuttgart · New York

Synthetic Transformations of Alkenyl MIDA Boronates toward the Efficient Construction of Organoborons

Honggen Wang*
a   School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. of China   Email: wanghg3@mail.sysu.edu.cn
,
Yao-Fu Zeng
b   Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, P. R. of China
,
Wen-Xin Lv
a   School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. of China   Email: wanghg3@mail.sysu.edu.cn
,
Dong-Hang Tan
a   School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. of China   Email: wanghg3@mail.sysu.edu.cn
› Author Affiliations
Generous financial support from the Key Project of Chinese National Programs for Fundamental Research and Development (2016YFA0602900), the National Natural Science Foundation of China (21472250), and the ‘1000-Youth Talents Plan’ is gratefully acknowledged.
Further Information

Publication History

Received: 25 January 2018

Accepted after revision: 22 February 2018

Publication Date:
28 March 2018 (online)


Dedicated to Professor Lian-Quan Gu.

Abstract

The attachment of N-methyliminodiacetyl boron (MIDA boron) to alkenes leads to a new type of activated alkenes. Synthetic manipulation of the alkene double bond while retaining the boron moiety offers an unprecedented opportunity for the construction of organoborons. These reactions feature unique reactivity, good regioselectivity, and they can be used to access organoborons that are historically difficult to prepare. Herein, we give a brief summary of advances in the use of alkenyl MIDA boronates as starting materials for organoboron synthesis. Mechanisms are discussed where relevant.

 
  • References

    • 1a Contemporary Boron Chemistry . Davidson MG. Hughes AK. Marder TB. Wade K. Royal Society of Chemistry; Cambridge: 2000
    • 1b Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials. Hall DG. Wiley-VCH; Weinheim: 2011. 2nd ed.
    • 1c Jana R. Pathak TP. Sigman MS. Chem. Rev. 2011; 111: 1417
  • 2 Carrow BP. Hartwig JF. J. Am. Chem. Soc. 2011; 133: 2116
  • 3 Brown H. Rao BC. J. Org. Chem. 1957; 22: 1137
  • 4 Petasis NA. Akritopoulou I. Tetrahedron Lett. 1993; 34: 583
  • 5 Thomas SP. French RM. Jheengut V. Aggarwal VK. Chem. Rec. 2009; 9: 24
    • 7a Gillis EP. Burke MD. J. Am. Chem. Soc. 2007; 129: 6716
    • 7b Li J. Ballmer SG. Gillis EP. Fujii S. Schmidt MS. Palazzolo AM. E. Lehmann JW. Morehouse GF. Burke MD. Science 2015; 347: 1221
    • 8a Lennox AJ. J. Lloyd-Jones GC. Chem. Soc. Rev. 2014; 43: 412
    • 8b Berionni G. Maji B. Knochel P. Mayr H. Chem. Sci. 2012; 3: 878
  • 9 Knapp DM. Gillis EP. Burke MD. J. Am. Chem. Soc. 2009; 131: 6961
    • 10a Quiclet-Sire B. Zard SZ. J. Am. Chem. Soc. 2015; 137: 6762
    • 10b Heinrich MR. Sharp LA. Zard SZ. Chem. Commun. 2005; 3077
    • 11a Ibrahim MR. Bühl M. Knab R. Von Rague Schleyer P. J. Comput. Chem. 1992; 13: 423
    • 11b Dang L. Lin Z. Organometallics 2008; 27: 4443

      For selected examples, see:
    • 12a Kobayashi M. Sanda F. Endo T. Macromolecules 2002; 35: 346
    • 12b Ansorge A. Brauer DJ. Bürger H. Hagen T. Pawelke G. J. Organomet. Chem. 1993; 444: 5
    • 12c Li X. Curran DP. J. Am. Chem. Soc. 2013; 135: 12076
    • 12d Cheng Q.-Q. Zhu S.-F. Zhang Y.-Z. Xie X.-L. Zhou Q.-L. J. Am. Chem. Soc. 2013; 135: 14094
    • 12e Chen D. Zhang X. Qi W.-Y. Xu B. Xu M.-H. J. Am. Chem. Soc. 2015; 137: 5268
  • 13 He Z. Yudin AK. J. Am. Chem. Soc. 2011; 133: 13770
  • 14 Li J. Burke MD. J. Am. Chem. Soc. 2011; 133: 13774
  • 15 Lv W.-X. Zeng Y.-F. Li Q. Chen Y. Tan D.-H. Yang L. Wang H. Angew. Chem. Int. Ed. 2016; 55: 10069
    • 16a Scharnagl FK. Bose SK. Marder TB. Org. Biomol. Chem. 2017; 15: 1738
    • 16b Noda H. Bode JW. Org. Biomol. Chem. 2016; 14: 16
    • 16c St Denis JD. He Z. Yudin AK. ACS Catal. 2015; 5: 5373
  • 17 Dumas AM. Molander GA. Bode JW. Angew. Chem. Int. Ed. 2012; 51: 5683
  • 18 Taguchi J. Ikeda T. Takahashi R. Sasaki I. Ogasawara Y. Dairi T. Kato N. Yamamoto Y. Bode JW. Ito H. Angew. Chem. Int. Ed. 2017; 56: 13847
  • 19 Lepage ML. Lai S. Peressin N. Hadjerci R. Patrick BO. Perrin DM. Angew. Chem. Int. Ed. 2017; 56: 15257
  • 20 Lee CF. Holownia A. Bennett JM. Elkins JM. St Denis JD. Adachi S. Yudin AK. Angew. Chem. Int. Ed. 2017; 56: 6264
  • 21 Khanizeman RN. Barde E. Bates RW. Guérinot A. Cossy J. Org. Lett. 2017; 19: 5046
    • 22a Lhermet R. Ahmad M. Fressigné C. Silvi B. Durandetti M. Maddaluno J. Chem. Eur. J. 2014; 20: 10249
    • 22b Satoh M. Miyaura N. Suzuki A. Chem. Lett. 1986; 1329
    • 22c Xu S. Lee C.-T. Rao H. Negishi E.-i. Adv. Synth. Catal. 2011; 353: 2981
    • 22d Cascia EL. Cuenca AB. Fernández E. Chem. Eur. J. 2016; 22: 18737
  • 23 Zeng Y.-F. Ji W.-W. Lv W.-X. Chen Y. Tan D.-H. Li Q. Wang H. Angew. Chem. Int. Ed. 2017; 56: 14707