Synlett 2018; 29(09): 1152-1156
DOI: 10.1055/s-0036-1591981
letter
© Georg Thieme Verlag Stuttgart · New York

Controlled Aerobic Oxidation of Primary Benzylic Alcohols to Aldehydes Catalyzed by Polymer-Supported Triazine-Based Dendrimer–Copper Composites

Shiguang Pan
a  Institute for Molecular Science (IMS) and JST-ACCEL, 5–1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan   Email: [email protected]
,
Shuo Yan
a  Institute for Molecular Science (IMS) and JST-ACCEL, 5–1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan   Email: [email protected]
b  Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), 5–1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
,
a  Institute for Molecular Science (IMS) and JST-ACCEL, 5–1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan   Email: [email protected]
b  Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), 5–1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
,
a  Institute for Molecular Science (IMS) and JST-ACCEL, 5–1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan   Email: [email protected]
b  Department of Functional Molecular Science, School of Physical Sciences, SOKENDAI (The Graduate University for Advanced Studies), 5–1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
› Author Affiliations
This work was supported by the JST-ACCEL program (JPMJAC401). We are also grateful for funding from the JSPS KAKENHI [Grant-in-Aid for Challenging Exploratory Research (No. 26620090); for Young Scientists (No. 26810099), for Scientific Research (C) (No. 16K05876), and for JSPS Fellows (No. 15F15039)]. S.P. acknowledges financial support from the Japan Society for Promotion of Sciences (JSPS; Postdoctoral Fellowship for Overseas Researchers).
Further Information

Publication History

Received: 27 February 2018

Accepted after revision: 14 March 2018

Publication Date:
09 April 2018 (online)


Abstract

A controlled aerobic oxidation of primary benzylic alcohols to the corresponding benzaldehydes by using polystyrene–poly­(ethylene glycol) (PS–PEG) resin-supported triazine-based polyethyleneamine dendrimer–copper complexes [PS–PEG-TD2–Cu(II)] was developed. In particular, PS–PEG-TD2–Cu(OAc)2 efficiently catalyzed the aerobic oxidation of benzylic alcohols in the presence of a catalytic amount of TEMPO under atmospheric conditions to give the corresponding aldehydes in up to quantitative yield. The catalyst was readily recovered by simple filtration and reused four times without significant loss of its catalytic activity.

Supporting Information

 
  • References and Notes

    • 2a Poliakoff M. Fitzpatrick JM. Farren TR. Anastas PT. Science 2002; 297: 807
    • 2b Anastas P. Eghbali N. Chem. Soc. Rev. 2010; 39: 301
    • 2c Sheldon RA. Chem. Soc. Rev. 2012; 41: 1437

      For selected reviews, see:
    • 3a Sheldon RA. Arends IW. C. E. Dijksman A. Catal. Today 2000; 57: 157
    • 3b Sheldon RA. Arends IW. C. E. Ten Brink GJ. Dijksman A. 2002; 35: 774
    • 3c Mallat T. Baiker A. Chem. Rev. 2004; 104: 3037
    • 3d Zhan B. Thompson A. Tetrahedron 2004; 60: 2917
    • 3e Parmeggiani C. Cardona F. Green Chem. 2012; 14: 547
    • 3f Davis SE. Ide MS. Davis RJ. Green Chem. 2013; 15: 17
  • 4 Greenwood NN. Earnshaw A. Chemistry of the Elements . Elsevier; Oxford: 2012. 2nd ed

    • For selected reviews, see:
    • 5a Studer A. Vogler T. Synthesis 2008; 1979
    • 5b Allen SE. Walvoord RR. Padilla-Salinas R. Kozlowski MC. Chem. Rev. 2013; 113: 6234
    • 5c Ryland BL. Stahl SS. Angew. Chem. Int. Ed. 2014; 53: 8824
    • 5d Cao Q. Dornan LM. Rogan L. Hughes NL. Muldoon M. Chem. Commun. 2014; 50: 4524
    • 5e Seki Y. Oisaki K. Kanai M. Tetrahedron Lett. 2014; 55: 3738

      For selected examples of Cu/TEMPO catalytic systems, see:
    • 6a Semmelhack MF. Schmid CR. Cortns DA. Chou CS. J. Am. Chem. Soc. 1984; 106: 3374
    • 6b Ragagnin G. Betzemeier B. Quici S. Knochel P. Tetrahedron 2002; 58: 3985
    • 6c Gamez P. Arends IW. C. E. Reedijk J. Sheldon RA. Chem. Commun. 2003; 2414
    • 6d Contel M. Izuel C. Laguna M. Villuendas PR. Alonso PJ. Fish RH. Chem. Eur. J. 2003; 9: 4168
    • 6e Jiang N. Ragauskas AJ. Org. Lett. 2005; 7: 3689
    • 6f Jiang N. Ragauskas A. J. 2006; 71: 7087
    • 6g Figiel PJ. Leskel M. Repo T. Adv. Synth. Catal. 2007; 349: 1173
    • 6h Mannam S. Alamsetti SK. Sekar G. Adv. Synth. Catal. 2007; 349: 2253
    • 6i Hossain MM. Shyu S.-G. Adv. Synth. Catal. 2010; 352: 3061
    • 6j Hoover JM. Stahl SS. J. Am. Chem. Soc. 2011; 133: 16901
    • 6k Könning D. Hiller W. Christmann M. Org. Lett. 2012; 14: 5258
    • 6l Hoover JM. Steves JE. Stahl SS. Nat. Protoc. 2012; 7: 1161
    • 6m Greene JF. Hoover JM. Mnnel DS. Root TW. Stahl SS. Org. Process Res. Dev. 2013; 17: 1247
    • 6n Chen C. Liu B. Chen W. Synthesis 2013; 45: 3387
    • 6o Zhang G. Lei J. Han X. Luan Y. Ding C. Shan S. Synlett 2015; 26: 779

      For selected examples of Cu/ABNO catalytic systems, see:
    • 7a Steves JE. Stahl SS. J. Am. Chem. Soc. 2013; 135: 15742
    • 7b Rogan L. Hughes NL. Cao Q. Dornan LM. Muldoon MJ. Catal. Sci. Technol. 2014; 4: 1720
    • 7c Steves JE. Preger Y. Martinelli JR. Welch CJ. Root TW. Hawkins JM. Stahl SS. Org. Process Res. Dev. 2015; 19: 1548
    • 7d Steves JE. Stahl SS. J. Org. Chem. 2015; 80: 11184

      For selected examples of Cu/AZADO catalytic systems, see:
    • 8a Sasano Y. Nagasawa S. Yamazaki M. Shibuya M. Park J. Iwabuchi Y. Angew. Chem. Int. Ed. 2014; 53: 3236
    • 8b Sasano Y. Kogure N. Nishiyama T. Nagasawa S. Iwabuchi Y. Chem. Asian J. 2015; 10: 1004
    • 10a Yang G. Ma J. Wang W. Zhao J. Lin X. Zhou L. Gao X. Catal. Lett. 2006; 112: 83
    • 10b Yang G. Zhu W. Zhang P. Xue H. Wang W. Tian J. Song M. Adv. Synth. Catal. 2008; 350: 542
    • 11a Dhakshinamoorthy A. Alvaro M. Garcia H. ACS Catal. 2011; 1: 48
    • 11b Qi Y. Luan Y. Yu J. Peng X. Wang G. Chem. Eur. J. 2015; 21: 1589
    • 11c Feng X. Xu C. Wang Z.-Q. Tang S.-F. Fu W.-J. Ji B.-M. Wang L.-Y. Inorg. Chem. 2015; 54: 2088
    • 12a Hu Z. Kerton FM. Appl. Catal., A 2012; 413-414, 332
    • 12b Samanta S. Das S. Samanta PK. Dutta S. Biswas P. RSC Adv. 2013; 3: 19455
    • 12c Gupta M. Sharma P. Gupta M. Gupta R. J. Chem. Sci. 2015; 127: 1485
    • 12d Buxaderas E. Graziano-Mayer M. Volpe MA. Radivoy G. Synthesis 2017; 49: 1387
  • 13 Zhu X. Yang D. Wei W. Jiang M. Li L. Zhu X. You J. Wang H. RSC Adv. 2014; 4: 64930
  • 14 Zhang G. Han X. Luan Y. Wang Y. Wen X. Xu L. Ding C. Gao J. RSC Adv. 2013; 3: 19255
    • 15a Chung CW. Y. Toy PH. J. Comb. Chem. 2007; 9: 115
    • 15b Akagawa K. Takigawa S. Mano E. Kudo K. Tetrahedron Lett. 2011; 52: 770
    • 15c Yu J. Luan Y. Qi Y. Hou J. Dong W. Yang M. Yang M. Wang G. RSC Adv. 2014; 4: 55028
  • 16 Pan S. Yan S. Osako T. Uozumi Y. ACS Sustainable Chem. Eng. 2017; 5: 10722

    • For selected examples, see:
    • 17a Uozumi Y. Shibatomi K. J. Am. Chem. Soc. 2001; 123: 2919
    • 17b Uozumi Y. Nakao R. Angew. Chem. Int. Ed. 2003; 42: 194
    • 17c Yamada YM. A. Arakawa T. Hocke H. Uozumi Y. Angew. Chem. Ind. Ed. 2007; 46: 704
    • 17d Uozumi Y. Matsuura Y. Arakawa T. Yamada YM. A. Angew. Chem. Ind. Ed. 2009; 48: 2708
    • 17e Hirai Y. Uozumi Y. Chem. Commun. 2010; 45: 1103
    • 17f Hudson R. Hamasaka G. Osako T. Yamada YM. A. Li C.-J. Uozumi Y. Moores A. Green Chem. 2013; 15: 2141
    • 17g Yan S. Pan S. Osako T. Uozumi Y. Synlett 2016; 27: 1232
  • 18 Synthesis of PS–PEG-TD2–Cu(II) Complexes AD A mixture of PS–PED-TD2 (1.0 g) and the appropriate copper salt (1.0 mmol) in MeOH (10 mL) was stirred at r.t. for 6 h. The mixture was then filtered, and the resulting resin beads were washed with MeOH (10 × 10 mL) and dried in vacuo overnight. The copper loadings of the catalysts were determined by ICP–AES analysis.
  • 19 We investigated the solvent effect (toluene, H2O, CH3CN, and THF) on the aerobic oxidation of benzyl alcohol under the standard conditions. The aerobic oxidation in toluene and H2O proceeded well to give benzaldehyde (2a) in 100 and 83% GC yield, respectively, while the reactions in CH3CN and THF were sluggish (56 and 9% GC yield, respectively). In addition, ICP analysis for the recovered catalyst from the reaction in H2O showed that 32% of the copper species leached into the solution during the reaction. On the basis of these results, we selected heptane for the further investigation.
  • 20 We monitored the formation of benzaldehyde in the aerobic oxidation of benzyl alcohol under O2 and air. Similar reaction rates were observed under O2 and air. Under O2: 64% GC yield (2 h), 83% GC yield (4 h), 89% GC yield (8 h), 90 % GC yield (12 h). Under air: 52% GC yield (2 h), 79% GC yield (4 h), 87% GC yield (8 h), 96% GC yield (12 h).
  • 21 We also tested various solvents for washing the recovered catalyst. MTBE was an effective solvent to extract the organic materials and keep the copper content in the polymer matrix.
  • 22 Synthesis of Aldehydes 2ay; General Procedure A mixture of catalyst PS–PEG-TD2–Cu(OAc)2 (100 mg, 0.05 mmol Cu), BnOH (1a, 27.0 mg, 0.25 mmol), and TEMPO (7.8 mg, 0.05 mmol) in heptane (2.0 mL) was stirred at 80 °C for 24 h under air (1 atm). The mixture was then cooled and filtered, and the resulting solid material was washed with Et2O (3 × 2 mL). The organic phases were combined, concentrated to a volume of 2 mL, and the internal standard was added to determine the GC yield. The crude product was purified by column chromatography [silica gel, hexane–Et2O (99:1)]. In the formation of some benzaldehydes, low isolated yields were observed because of instability of the benzaldehydes on silica gel. Benzaldehyde (2a) Colorless oil; yield: 10.8 mg (41%). 1H NMR (400 MHz, CDCl3): δ = 10.03 (s, 1 H), 7.89 (dd, J = 8.4, 1.2 Hz, 2 H), 7.64 (t, J = 7.6 Hz, 1 H), 7.56–7.52 (m, 2 H); 13C NMR (100 MHz, CDCl3): δ = 192.4, 136.4, 134.5, 129.7, 129.0.