Synthesis 2018; 50(11): 2181-2190
DOI: 10.1055/s-0037-1609153
paper
© Georg Thieme Verlag Stuttgart · New York

Regioexhaustive Functionalization of the Carbocyclic Core of Isoquinoline: Concise Synthesis of Oxoaporphine Core and Ellipticine

Dániel Vajk Horváth
Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary   Email: soos.tibor@ttk.mta.hu
,
Frigyes Domonyi
Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary   Email: soos.tibor@ttk.mta.hu
,
Roberta Palkó
Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary   Email: soos.tibor@ttk.mta.hu
,
Andrea Lomoschitz
Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary   Email: soos.tibor@ttk.mta.hu
,
Tibor Soós*
Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, 1117 Budapest, Hungary   Email: soos.tibor@ttk.mta.hu
› Author Affiliations
We gratefully acknowledge the financial support from the National Research, Development and Innovation Office (K-116150). We are also grateful for the financial support from Soneas Research Ltd.
Further Information

Publication History

Received: 08 December 2017

Accepted: 15 December 2017

Publication Date:
07 March 2018 (online)


Abstract

A general and versatile strategy has been developed for the functionalization of the carbocyclic core of the isoquinoline. This regioexhaustive approach employs electrophilic halogenation as a toolbox methodology and delivers highly decorated intermediates that can be further elaborated toward medicinally relevant building blocks or natural products.

Supporting Information

 
  • References

    • 1a Bentley KW. The Isoquinoline Alkaloids . Harwood Academic Publishers; Amsterdam: 1998
    • 1b Eicher T. Hauptmann S. Speicher A. The Chemistry of Heterocycles . Wiley-VCH; Weinheim: 2003
    • 1c Bentley KW. Nat. Prod. Rep. 2006; 23: 444
    • 1d Joule JA. Mills K. Heterocyclic Chemistry . Wiley-Blackwell; West Sussex: 2010. 5th ed.
    • 1e Vitaku E. Smith DT. Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 1f Iranshahy M. Quinn RJ. Iranshahi M. RSC Adv. 2014; 4: 15900
    • 1g Chrzanowska M. Grajewska A. Rozwadowska MD. Chem. Rev. 2016; 116: 12369
    • 2a Pomeranz C. Monatsh. Chem. 1893; 14: 116
    • 2b Fritsch P. Ber. Dtsch. Chem. Ges. 1893; 26: 419
    • 2c Pictet A. Spengler T. Ber. Dtsch. Chem. Ges. 1911; 44: 2030
    • 2d Bischler A. Napieralski B. Ber. Dtsch. Chem. Ges. 1893; 26: 1903
    • 2e For a recent diversity-oriented approach, see: Awuah E. Capretta A. J. Org. Chem. 2010; 75: 5627

      For pioneering work, see:
    • 3a Roesch KR. Larock RC. J. Org. Chem. 1998; 63: 5306
    • 3b Guimond N. Fagnou K. J. Am. Chem. Soc. 2009; 131: 12050
    • 3c Gerfaud T. Neuville L. Zhu J. Angew. Chem. Int. Ed. 2009; 48: 572
    • 3d Shi Z. Koester DC. Boultadakis-Arapinis M. Glorius F. J. Am. Chem. Soc. 2013; 135: 12204

    • For recent examples, see:
    • 3e Jiang H. Yang J. Tang X. Wu W. J. Org. Chem. 2016; 81: 2053
    • 3f Chu H. Xue P. Yu J.-T. Cheng J. J. Org. Chem. 2016; 81: 8009
    • 3g Kuai C. Wang L. Li B. Yang Z. Cui X. Org. Lett. 2017; 19: 2102
    • 4a Schlosser M. Angew. Chem. Int. Ed. 2005; 44: 376
    • 4b Schlosser M. Angew. Chem. Int. Ed. 2006; 45: 5432
  • 5 Grethe G. The Chemistry of Heterocyclic Compounds, Isoquinolines. John Wiley & Sons; New York: 1981
  • 6 Fortner P. Monatsh. Chem. 1893; 14: 146
  • 7 Gordon M. Pearson DE. J. Org. Chem. 1964; 29: 329
  • 8 Brown WD. Gouliaev AH. Synthesis 2002; 83
  • 9 Walker MD. Andrews BI. Burton AJ. Humphreys LD. Kelly G. Schilling MB. Scott PW. Org. Process Res. Dev. 2010; 14: 108
  • 10 Tilstam U. Weinmann H. Org. Process Res. Dev. 2002; 6: 384
    • 11a Keilin B. Cass WE. J. Am. Chem. Soc. 1942; 64: 2442
    • 11b Graulich A. Scuvée-Moreau J. Seutin V. Liégeois J.-F. J. Med. Chem. 2005; 48: 4972
    • 12a Tscherniac J. German Patent 134979, 1901
    • 12b Einhorn A. Bischkopff E. Szelinski B. Schupp G. Spröngerts E. Ladisch C. Mauermayer T. Liebigs Ann. Chem. 1905; 343: 207
  • 13 According to the literature,9 the benzene ring of 5,8-dichloroisoquinoline can be oxidized to give the appropriate pyridine-3,4-dicarboxylic acid.
    • 14a Rossini AF. C. Muraca AC. A. Casagrande GA. Raminelli C. J. Org. Chem. 2015; 80: 10033
    • 14b Ku AF. Cuny GD. Org. Lett. 2015; 17: 1134
    • 14c Chen J. Wan M. Hua J. Sun Y. Lv Z. Li W. Liu L. Org. Biomol. Chem. 2015; 13: 11561
    • 15a Miller RB. Moock T. Tetrahedron Lett. 1980; 21: 3319
    • 15b Miller RB. Dugar S. Epperson JR. Heterocycles 1987; 25: 217
    • 15c Nagao Y. Endo R. Tokumaru M. Arimitsu K. Heterocycles 2009; 77: 1403
    • 15d Nagao Y. Hirota K. Tokumaru M. Kozawa K. Heterocycles 2007; 73: 593
    • 15e Liu C.-Y. Knochel P. J. Org. Chem. 2007; 72: 7106
  • 16 Godard A. Rocca P. Pomel V. Thomas-dit-Dumont L. Rovera JC. Thaburet JF. Marsais F. Quéguiner G. J. Organomet. Chem. 1996; 517: 25
    • 17a Sam J. Shafik RM. Aparajithan K. J. Pharm. Sci. 1970; 59: 59
    • 17b Wieting MJ. Fisher JT. Schafer GA. Visco DM. Gallucci CJ. Mattson EA. Eur. J. Org. Chem. 2015; 525
    • 18a Cannon GJ. Kim CJ. Aleem AM. J. Heterocycl. Chem. 1972; 731
    • 18b Tang H. Wei Y.-B. Zhang C. Ning F.-X. Qiao W. Huang S.-L. Ma L. Huang Z.-S. Gu L.-Q. Eur. J. Med. Chem. 2009; 44: 2523
    • 18c Chuang T.-H. Li C.-F. Lee H.-Z. Wei Y.-C. J. Org. Chem. 2013; 78: 4974