Synlett 2018; 29(07): 979-985
DOI: 10.1055/s-0037-1609200
letter
© Georg Thieme Verlag Stuttgart · New York

Molecular Iodine Catalysed Benzylic sp3 C–H Bond Amination for the Synthesis of 2-Arylquinazolines from 2-Aminobenzaldehydes, 2-Aminobenzophenones and 2-Aminobenzyl Alcohols

Dewal S. Deshmukh
Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai-400019, India   Email: [email protected]
,
Department of Chemistry, Institute of Chemical Technology, Matunga, Mumbai-400019, India   Email: [email protected]
› Author Affiliations
D.S.D. thanks the University Grant Comission (UGC), New Delhi, India for providing a Senior Research Fellowship under Basic Science ­Research (BSR) scheme [F.25-1/2014-15(BSR)/F.7-227/2009 (BSR), 16th Feb 2015].
Further Information

Publication History

Received: 27 October 2017

Accepted after revision: 18 December 2017

Publication Date:
29 January 2018 (online)


Abstract

Molecular iodine catalysed benzylic sp3 C–H bond amination has been developed for the synthesis of quinazolines from 2-aminobenzaldehydes and 2-aminobenzophenones with benzylamines. The use of oxygen as a green oxidant combined with the transition-metal-, additive- and solvent-free conditions makes the methodology economical and greener. The lack of aqueous work up also enhances the efficiency of this protocol. A series of 2-arylquinazolines was synthesised in good to excellent yields by using the developed protocol. 2-Amino­benzyl alcohols could also be employed to prepare the corresponding quinazoline derivatives.

Supporting Information

 
  • References and Notes

    • 1a Chen Z. Wang B. Zhang J. Yu W. Liu Z. Zhang Y. Org. Chem. Front. 2015; 2: 169
    • 1b Gephart RT. III. Warren TH. Organometallics 2012; 31: 7728
    • 1c Rouquet G. Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
    • 1d Pandey G. Laha R. Singh D. J. Org. Chem. 2016; 81: 7161
    • 1e Truong T. Nguyen KD. Doan SH. Phan NT. S. Appl. Catal., A 2016; 510: 27
    • 1f Tang D. Li X.-L. Guo X. Wu P. Li J.-H. Wang K. Jing H.-W. Chen B.-H. Tetrahedron 2014; 70: 4038
    • 1g Jeffrey JL. Bartlett ES. Sarpong R. Angew. Chem. Int. Ed. 2013; 52: 2194
    • 1h Guo S.-R. Pailla SK. Yang M. Adv. Synth. Catal. 2017; 359: 2
    • 1i Feng J. Lv MF. Lu GP. Cai C. Org. Chem. Front. 2015; 2: 60
    • 1j Xue D. Long Y.-Q. J. Org. Chem. 2014; 79: 4727
    • 1k Yan Y. Zhang Y. Zha Z. Wang Z. Org. Lett. 2013; 15: 2274
    • 2a Cenini S. Gallo E. Penoni A. Ragainia F. Tollari S. Chem. Commun. 2000; 2265
    • 2b Lu H. Subbarayan V. Tao J. Zhang XP. Organometallics 2010; 29: 389
    • 2c Ye Y.-H. Zhang J. Wang G. Chen S.-Y. Yu X.-Q. Tetrahedron 2011; 67: 4649
    • 3a Powell DA. Fan H. J. Org. Chem. 2010; 75: 2726
    • 3b Barman DN. Nicholas KM. Eur. J. Org. Chem. 2011; 908
    • 3c Ni Z. Zhang Q. Xiong T. Zheng Y. Li Y. Zhang H. Zhang J. Liu Q. Angew. Chem. Int. Ed. 2012; 51: 1244
    • 4a Nishioka Y. Uchida T. Katsuki T. Angew. Chem. Int. Ed. 2013; 52: 1739
    • 4b Ichinose M. Suematsu H. Yasutomi Y. Nishioka Y. Uchida T. Katsuki T. Angew. Chem. Int. Ed. 2011; 50: 9884
    • 4c Sun K. Sachwani R. Richert KJ. Driver TG. Org. Lett. 2009; 11: 3598
    • 5a Intrieri D. Mariani M. Caselli A. Ragaini F. Gallo E. Chem. Eur. J. 2012; 18: 10487
    • 5b Milczek E. Boudet N. Blakey S. Angew. Chem. Int. Ed. 2008; 47: 6825
    • 5c Zardi P. Caselli A. Macchi P. Ferretti F. Gallo E. Organometallics 2014; 33: 2210
  • 6 Peng H. Lin A. Zhang Y. Jiang H. Zhou J. Cheng Y. Zhu C. Hu H. ACS Catal. 2012; 2: 163
  • 7 Zhang M. J. Chem. Res. 2013; 606
    • 8a Liu J. Zhang H. Yi H. Liu C. Lei A. Sci. China Chem. 2015; 58: 1323
    • 8b Yang L. Shi X. Hu B.-Q. Wang L.-X. Asian J. Org. Chem. 2016; 5: 494
    • 8c Xue Q. Xie J. Li H. Chenga Y. Zhu C. Chem. Commun. 2013; 3700
    • 8d Zhao D. Shen Q. Li J.-X. Adv. Synth. Catal. 2015; 357: 339
    • 8e Liu W. Liu C. Zhang Y. Sun Y. Abdukadera A. Wang B. Li H. Ma X. Zhang Z. Org. Biomol. Chem. 2015; 13: 7154
    • 8f Takeda Y. Hayakawa J. Yano K. Minakata S. Chem. Lett. 2012; 41: 1672
    • 8g Fan R. Li W. Pu D. Zhang L. Org. Lett. 2009; 11: 1425
    • 9a Zhang M. Zhang A.-Q. Peng Y. J. Organomet. Chem. 2013; 723: 224
    • 9b Tsukano C. Chem. Pharm. Bull. 2017; 65: 409
    • 10a Yusubova MS. Zhdankin MS. Resource-Efficient Technologies 2015; 1: 49
    • 10b Biswas A. Selling GS. Shogren RL. Willett JL. Buchananand CM. Cheng HN. Chem. Today 2009; 27: 33
    • 10c Yamamoto Y. Gridnev ID. Patil NT. Jin T. Chem. Commun. 2009; 5075
    • 10d Liu D. Lei A. Chem. Asian J. 2015; 10: 806
    • 10e Veisi H. Curr. Org. Chem. 2011; 15: 2438
    • 10f Mphahlele MJ. Molecules 2009; 14: 5308
    • 10g Ren Y.-M. Cai C. Yang R.-C. RSC Adv. 2013; 3: 7182
    • 10h Mphahlele MJ. Molecules 2009; 14: 4814
    • 10i Parvatkar PT. Parameswaran PS. Tilve SG. Chem. Eur. J. 2012; 18: 5460
  • 11 Tekalea SU. Kauthalea SS. Dakea SA. Sardab SR. Pawar RP. Curr. Org. Chem. 2012; 16: 1485
    • 12a Vijaychand A. Manjula SN. Bharath EN. Divya B. Int. J. Pharma Bio Sci. 2011; 2: 780
    • 12b Ravez S. Castillo-Aguilera O. Depreux P. Goossens L. Expert Opin. Ther. Pat. 2015; 25: 1
    • 12c Jafari E. Khajouei MR. Hassanzadeh F. Hakimelahi GH. Khodarahmi GA. Res. Pharma. Sci. 2016; 11: 1
    • 12d Khan I. Ibrar A. Ahmed W. Saeed A. Eur. J. Med. Chem. 2015; 90: 124
    • 12e Ajani OO. Audu OY. Aderohunmu DV. Owolabi DV. Olomieja AO. Am. J. Drug Discov. Dev. 2017; 7: 1
    • 13a Zhang Z. Wang M. Zhang C. Zhang Z. Lua J. Wang F. Chem. Commun. 2015; 9205
    • 13b Tiwari AR. Bhanage BM. Org. Biomol. Chem. 2016; 14: 10567
    • 13c Li C. An S. Zhu Y. Zhang J. Kang Y. Liu P. Wang Y. Li J. RSC Adv. 2014; 4: 49888
    • 13d Chen X. Chen T. Ji F. Zhou Y. Yin S.-F. Catal. Sci. Technol. 2015; 5: 2197
    • 13e Ma J. Wan Y. Hong C. Li M. Hu X. Mo W. Hu B. Sun N. Jin L. Shen Z. Eur. J. Org. Chem. 2017; 3335
    • 13f Chen X. Qi H. Wu S. Liu L. Wen J. Li W. Guo F. Bian Y. Li J. Heterocycles 2017; 94: 86
    • 14a Sarode SA. Jadhav VG. Nagarkar JM. Tetrahedron Lett. 2017; 58: 779
    • 14b Yao S. Zhou K. Wang J. Cao H. Yu L. Wu J. Qiu P. Xu Q. Green Chem. 2017; 19: 2945
    • 14c Chen Z. Chen J. Liu M. Ding J. Gao W. Huang X. Wu H. J. Org. Chem. 2013; 78: 11342
    • 14d Chen M. Zhang M. Xiong B. Tan Z. Lv W. Jiang H. Org. Lett. 2014; 16: 6028
  • 15 Ju J. Hua R. Sua J. Tetrahedron 2012; 68: 9364
    • 16a Omar MA. Conrad J. Beifuss U. Tetrahedron 2014; 70: 3061
    • 16b Wang C. Li S. Liu H. Jiang Y. Fu H. J. Org. Chem. 2010; 75: 7936
  • 17 Omar MA. Conrad J. Beifuss U. Tetrahedron 2014; 70: 5682
  • 18 Malakar CC. Baskakova A. Conrad J. Beifuss U. Chem. Eur. J. 2012; 18: 8882
  • 19 Wang H. Chen H. Chen Y. Deng G.-J. Org. Biomol. Chem. 2014; 12: 7792
  • 20 Tang L. Wang P. Fan Y. Yang X. Wan C. Zha Z. ChemCatChem 2016; 8: 3565
    • 21a Truong VL. Morrow M. Tetrahedron Lett. 2010; 51: 758
    • 21b Xu C. Jia F.-C. Zhou Z.-W. Zheng S.-J. Li H. Wu A.-X. J. Org. Chem. 2016; 81: 3000
    • 21c Raut AB. Tiwari AR. Bhanage BM. ChemCatChem 2017; 9: 1292
    • 21d Yan Y. Wang Z. Chem. Commun. 2011; 9513
  • 22 Zhang J. Zhu D. Yu C. Wan C. Wang Z. Org. Lett. 2010, 12: 2841
  • 23 Han B. Wang C. Han R.-F. Yu W. Duan X.-Y. Fang R. Yang X.-L. Chem. Commun. 2011; 7818
  • 24 Gopalaiah K. Saini A. Devi A. Org. Biomol. Chem. 2017; 15: 5781
    • 25a Nale DB. Bhanage BM. Green Chem. 2015; 17: 2480
    • 25b Wagh KV. Bhanage BM. Green Chem. 2015; 17: 4446
    • 25c Tiwari AR. Bhanage BM. Green Chem. 2016; 18: 144
    • 25d Yedage SL. Bhanage BM. Green Chem. 2016; 18: 5635
    • 25e Gautam P. Dhiman P. Polshettiwar V. Bhanage BM. Green Chem. 2016; 18: 5890
    • 25f Gautam P. Kathe P. Bhanage BM. Green Chem. 2017; 19: 823
  • 26 General experimental procedure for the synthesis of 2-arylquinazolines (3): An oven-dried 25 mL round-bottom flask was charged with 2-aminobenzaldehyde/2-aminobenzophenone (1, 0.5 mmol) or 2-aminobenzyl alcohol (4a, 0.5 mmol) with benzylamine (2, 1.5 mmol) and molecular iodine (10 mol%). The mixture was then stirred at 130 °C for 3–15 h under an oxygen atmosphere, and the progress of the reaction was monitored by TLC. Upon completion, the mixture was cooled to room temperature and the crude product was purified by column chromatography. 6-Chloro-2-(4-methoxyphenyl)quinazoline (3b) Yellow solid (88%); mp 168–170 °C; 1H NMR (400 MHz, CDC3): δ = 9.32 (s, 1 H), 8.54–8.52 (m, 2 H), 7.95 (d, J = 9.0 Hz, 1 H), 7.85 (d, J = 2.1 Hz, 1 H), 7.77 (dd, J = 9.0, 2.3 Hz, 1 H), 7.02 (d, J =8.4 Hz, 2 H), 3.88 (s, 3 H); 13C NMR (101 MHz, CDCl3): δ = 162.0, 161.1, 159.4, 149.3, 135.0, 132.2, 130.2, 130.1, 125.8, 123.7, 114.0, 55.4; GCMS (EI, 70 eV): m/z (%) = 270 (100), 255 (24), 227 (14), 192 (10). 2,4-Diphenylquinazoline (3q) White solid (88%); mp 117–119 °C; 1H NMR (500 MHz, CDCl3): δ = 8.69 (d, J = 8.1 Hz, 2 H), 8.15 (d, J = 8.4 Hz, 1 H), 8.11 (d, J = 8.4 Hz, 1 H), 7.89–7.85 (m, 3 H), 7.60–7.58 (m, 3 H), 7.54–7.47 (m, 4 H); 13C NMR (125 MHz, CDCl3): δ = 168.3, 160.2, 152.0, 138.2, 137.7, 133.5, 130.5, 130.2, 129.9, 129.2, 128.7, 128.5, 127.0, 121.7; GCMS (EI, 70 eV): m/z (%) = 282 (65), 281 (100), 203 (8), 178 (8), 151 (6), 141 (7), 77 (8)