Synthesis 2018; 50(10): 2067-2075
DOI: 10.1055/s-0037-1609301
paper
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Germylation of Aryl Bromides and Aryl Triflates Using Hexamethyldigermane

Narumi Komami
Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Sapporo, Hokkaido 060-0812, Japan   Email: tyoshino@pharm.hokudai.ac.jp   Email: smatsuna@pharm.hokudai.ac.jp
,
Keitaro Matsuoka
Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Sapporo, Hokkaido 060-0812, Japan   Email: tyoshino@pharm.hokudai.ac.jp   Email: smatsuna@pharm.hokudai.ac.jp
,
Tatsuhiko Yoshino*
Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Sapporo, Hokkaido 060-0812, Japan   Email: tyoshino@pharm.hokudai.ac.jp   Email: smatsuna@pharm.hokudai.ac.jp
,
Shigeki Matsunaga*
Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12 Nishi-6, Sapporo, Hokkaido 060-0812, Japan   Email: tyoshino@pharm.hokudai.ac.jp   Email: smatsuna@pharm.hokudai.ac.jp
› Author Affiliations
This work was supported in part by JSPS KAKENHI Grant Number JP15H05802 in Precisely Designed Catalysts with Customized Scaffolding.
Further Information

Publication History

Received: 12 December 2017

Accepted after revision: 16 January 2018

Publication Date:
14 February 2018 (online)


Abstract

Palladium-catalyzed germylation of aryl bromides and aryl triflates using commercially available hexamethyldigermane is described. Optimized reaction conditions afforded various functionalized aryltrimethylgermanes, including drug-like molecules, in moderate to good yields, demonstrating the versatility of the presented protocols.

Supporting Information

 
  • References

    • 1a Denmark SE. Sweis RF. In Metal-Catalyzed Cross-Coupling Reactions . de Meijere A. Diederich F. Wiley-VCH; Weinheim: 2008: 163
    • 1b Chan TH. Fleming I. Synthesis 1979; 761
    • 1c Hosomi A. Miura K. Bull. Chem. Soc. Jpn. 2004; 77: 835
    • 1d Denmark SE. Ambrosi A. Org. Process Res. Dev. 2015; 19: 982
    • 1e Komiyama T. Minami Y. Hiyama T. ACS Catal. 2017; 7: 631
    • 2a Mitchell TN. In Metal-Catalyzed Cross-Coupling Reactions . de Meijere A. Diederich F. Wiley-VCH; Weinheim: 2008: 125
    • 2b Ingham RK. Rosenberg SD. Gilman H. Chem. Rev. 1960; 60: 459
    • 3a Akiyama T. In Main Group Metals in Organic Synthesis . Yamamoto H. Oshima K. Wiley-VCH; Weinheim: 2004: 593-620
    • 3b Quane D. Bottei RS. Chem. Rev. 1963; 63: 403 ; and references cited therein
    • 4a Eaborn C. Pande KC. J. Chem. Soc. 1960; 1566
    • 4b Moerlein SM. J. Chem. Soc., Perkin Trans. 1 1985; 1687
    • 4c Coenen HH. Moerlein SM. J. Fluorine Chem. 1987; 36: 63
    • 4d Moerlein SM. J. Org. Chem. 1987; 52: 664
    • 5a Dallaire C. Brook MA. Organometallics 1990; 9: 2873
    • 5b Dallaire C. Brook MA. Organometallics 1993; 12: 2332
    • 6a Boyer IJ. Toxicology 1989; 55: 253
    • 6b Arylgermanes are generally less toxic even compared with organosilanes: Lukevics E. Ignatovich L. Appl. Organometal. Chem. 1992; 6: 113
    • 7a Spivey AC. Gripton CJ. Noban C. Parr NJ. Synlett 2005; 2167
    • 7b Zhang Q. Liu C. Shi J. Xu Q. Jin L. Zhao C. Zhang T. Synlett 2016; 27: 1945
    • 7c Ozaki K. Matsuoka W. Ito H. Itami K. Org. Lett. 2017; 19: 1930
    • 7d Ozaki K. Murai K. Matsuoka W. Kawasumi K. Ito H. Itami K. Angew. Chem. Int. Ed. 2017; 56: 1361

      Cross-coupling reactions of arylgermane derivatives:
    • 8a Kosugi M. Tanji T. Tanaka Y. Yoshida A. Fugami K. Kameyama M. Migita T. J. Organomet. Chem. 1996; 508: 255
    • 8b Faller JW. Kultyshev RG. Organometallics 2002; 21: 5911
    • 8c Nakamura T. Kinoshita H. Shinokubo H. Oshima K. Org. Lett. 2002; 4: 3165
    • 8d Enokido T. Fugami K. Endo M. Kameyama M. Kosugi M. Adv. Synth. Catal. 2004; 346: 1685
    • 8e Endo M. Fugami K. Enokido T. Sano H. Kosugi M. Adv. Synth. Catal. 2007; 349: 1025
    • 8f Spivey AC. Tseng C.-C. Hannah JP. Gripton CJ. G. de Fraine P. Parr NJ. Scicinski JJ. Chem. Commun. 2007; 2926
    • 8g Pitteloud J.-P. Zhang Z.-T. Liang Y. Cabrera L. Wnuk SF. J. Org. Chem. 2010; 75: 8199
    • 8h Zhang Z.-T. Pitteloud J.-P. Cabrera L. Liang Y. Toribio M. Wnuk SF. Org. Lett. 2010; 12: 816
    • 9a Matsumoto H. Nagashima S. Yoshihiro K. Nagai Y. J. Organomet. Chem. 1975; 85: C1
    • 9b Azarian D. Dua SS. Eaborn C. Walton DR. M. J. Organomet. Chem. 1976; 117: C55
    • 9c Matsumoto H. Yoshihiro K. Nagashima S. Watanabe H. Nagai Y. J. Organomet. Chem. 1977; 128: 409
    • 9d Eaborn C. Griffiths RW. Pidcock A. J. Organomet. Chem. 1982; 225: 331
    • 9e Hatanaka Y. Hiyama T. Tetrahedron Lett. 1987; 28: 4715
    • 9f Gooßen LJ. Ferwanah A.-RS. Synlett 2000; 1801
    • 9g Shirakawa E. Kurahashi T. Yoshida H. Hiyama T. Chem. Commun. 2000; 1895
    • 9h Denmark SE. Kallemeyn JM. Org. Lett. 2003; 5: 3483
    • 9i Iwasawa T. Komano T. Tajima A. Tokunaga M. Obora Y. Fujihara T. Tsuji Y. Organometallics 2006; 25: 4665
    • 9j McNeill E. Barder TE. Buchwald SL. Org. Lett. 2007; 9: 3785
    • 10a Murata M. Suzuki K. Watanabe S. Masuda Y. J. Org. Chem. 1997; 62: 8569
    • 10b Manoso AS. DeShong P. J. Org. Chem. 2001; 66: 7449
    • 10c Murata M. Ishikura M. Nagata M. Watanabe S. Masuda Y. Org. Lett. 2002; 4: 1843
    • 10d Yamanoi Y. J. Org. Chem. 2005; 70: 9607
    • 10e Hamze A. Provot O. Alami M. Brion J.-D. Org. Lett. 2006; 8: 931
    • 10f Yamanoi Y. Nishihara H. Tetrahedron Lett. 2006; 47: 7157
    • 10g Murata M. Yamasaki H. Ueta T. Nagata M. Ishikura M. Watanabe S. Masuda Y. Tetrahedron 2007; 63: 4087
    • 10h Murata M. Yamasaki H. Uogishi K. Watanabe S. Masuda Y. Synthesis 2007; 2944
    • 10i Yamanoi Y. Taira T. Sato J.-i. Nakamula I. Nishihara H. Org. Lett. 2007; 9: 4543
    • 10j Yamanoi Y. Nishihara H. J. Org. Chem. 2008; 73: 6671
    • 10k Lesbani A. Kondo H. Yabusaki Y. Nakai M. Yamanoi Y. Nishihara H. Chem. Eur. J. 2010; 16: 13519
    • 10l Yamanoi Y. Sendo J. Kobayashi T. Maeda H. Yabusaki Y. Miyachi M. Sakamoto R. Nishihara H. J. Am. Chem. Soc. 2012; 134: 20433
    • 10m Chen L. Huang J.-B. Xu Z. Zheng Z.-J. Yang K.-F. Cui Y.-M. Cao J. Xu L.-W. RSC Adv. 2016; 6: 67113
    • 10n Xu Z. Xu J.-Z. Zhang J. Zheng Z.-J. Cao J. Cui Y.-M. Xu L.-W. Chem. Asian J. 2017; 12: 1749
  • 11 Reddy PN. Hayashi T. Tanaka M. Chem. Lett. 1991; 20: 677
  • 12 Goodson FE. Wallow TI. Novak BM. J. Am. Chem. Soc. 1997; 119: 12441; and references cited therein
  • 13 Grundy SM. Ahrens EH. Jr. Salen G. Schreibman PH. Nestel PJ. J. Lipid Res. 1972; 13: 531
  • 14 Yang J. Teng Y. Ara S. Rallapalli S. Cook JM. Synthesis 2009; 1036
  • 15 Taylor NJ. Emer E. Preshlock S. Schedler M. Tredwell M. Verhoog S. Mercier J. Genicot C. Gouverneur V. J. Am. Chem. Soc. 2017; 139: 8267
  • 16 Zanon J. Klapars A. Buchwald SL. J. Am. Chem. Soc. 2003; 125: 2890
  • 17 Krajewski K. Zhang Y. Parrish D. Deschamps J. Rollera PP. Pathak VK. Bioorg. Med. Chem. Lett. 2006; 16: 3034