Synthesis 2018; 50(10): 1991-2000
DOI: 10.1055/s-0037-1609304
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Monobactams via the Diastereoselective Kinugasa Reaction

Kamil Kabala
a  Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland   Email: [email protected]
,
Barbara Grzeszczyk
a  Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland   Email: [email protected]
,
Bartłomiej Furman
a  Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland   Email: [email protected]
,
Marek Chmielewski*
a  Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland   Email: [email protected]
,
Jolanta Solecka
b  National Institute of Public Health – National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
,
b  National Institute of Public Health – National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland
› Author Affiliations
Financial support for this work was provided through the National Science Center Grant OPUS 2015/17/B/STS/01011.
Further Information

Publication History

Received: 20 November 2017

Accepted after revision: 19 January 2018

Publication Date:
27 February 2018 (online)


Abstract

The Kinugasa reaction between phthalimidoacetylene and cyclic nitrones derived from l-phenylglycine or l-serine and glyoxylic acid­, catalyzed by copper(I) chloride in the presence of triethylamine, is reported. The acetylene molecule approaches the nitrone exclusively anti to the bulky substituent next to the nitrogen atom to provide the cis-substituted β-lactam ring preferentially. The six-membered oxazinone ring can be easily opened, the phthaloyl residue can be transformed into a Boc protecting group, and substituents at the C-4 carbon atom and the nitrogen atom of the β-lactam ring can be easily removed or transformed into groups suitable for further synthesis of a variety of monobactam structures. Selected synthesized compounds were evaluated for their biological activity, showing interesting properties.

Supporting Information

 
  • References

  • 1 Kabala K. Grzeszczyk B. Stecko S. Furman B. Chmielewski M. J. Org. Chem. 2015; 80: 12038
  • 2 Kinugasa M. Hashimoto S. J. Chem. Soc., Chem. Commun. 1972; 466
  • 3 Stecko S. Furman B. Chmielewski M. Tetrahedron 2014; 70: 7817
  • 4 Khangarot RK. Kaliappan KP. Eur. J. Org. Chem. 2013; 7664
  • 5 Saito T. Kikuchi T. Tanabe H. Yahiro J. Otani T. Tetrahedron Lett. 2009; 50: 4969
    • 6a Ding LK. Irwin WJ. J. Chem. Soc., Perkin Trans. 1 1976; 2382
    • 6b Ye MC. Zhou J. Tang Y. J. Org. Chem. 2006; 71: 3576
    • 7a Stecko S. Mames A. Furman B. Chmielewski M. J. Org. Chem. 2008; 73: 7402
    • 7b Stecko S. Mames A. Furman B. Chmielewski M. J. Org. Chem. 2009; 74: 3094
    • 7c Grzeszczyk B. Poławska K. Shaker YM. Stecko S. Mames A. Woźnica M. Chmielewski M. Furman B. Tetrahedron 2012; 68: 10633
    • 7d Khangarot RK. Kaliappan KP. Eur. J. Org. Chem. 2011; 6117
  • 8 Kocieński PJ. Protecting Groups . Georg Thieme; Stuttgart: 2004
    • 9a Sueda T. Oshima A. Teno N. Org. Lett. 2011; 13: 3996
    • 9b Alford JS. Davies HM. L. Org. Lett. 2012; 14: 6020
  • 10 Parker WL. O’Sullivan J. Sykes RB. Adv. Appl. Microbiol. 1986; 31: 181
  • 11 Andreoli P. Billi L. Cainelli G. Panunzio M. Bandini E. Martelli G. Spunta G. Tetrahedron 1991; 47: 9061
  • 12 Aoki H. Sakai H. Kohsaka M. Konomi T. Hosoda J. Kubochi Y. Iguchi E. Imanaka H. J. Antibiot. 1976; 29: 492
  • 13 Zhao M. Li J. Song Z. Desmond R. Tschaen DM. Grabowski EJ. J. Reider PJ. Tetrahedron Lett. 1998; 39: 5323
    • 14a Kamiya T. Oku T. Nakaguchi O. Takeno H. Hashimoto M. Tetrahedron Lett. 1978; 5119
    • 14b Nakaguchi O. Oku T. Takeno H. Hashimoto M. Kamiya T. Chem. Pharm. Bull. 1987; 35: 3985
    • 15a Brain EG. Eglington AJ. Nayler JH. C. Pearson MJ. Southgate R. J. Chem. Soc., Perkin Trans. 1 1976; 447
    • 15b Lee SH. Bull. Korean Chem. Soc. 2013; 34: 127
    • 16a Suarto A. Lombardi P. Galliani C. Franceschi G. Tetrahedron Lett. 1978; 4059
    • 16b Konosu T. Oida S. Chem. Pharm. Bull. 1991; 39: 2212
  • 17 Solecka J. Kurzątkowski W. Med. Dosw. Mikrobiol. 1999; 51: 151
  • 18 Lewandowski EM. Szczupak Ł. Wong S. Skiba J. Guspiel A. Solecka J. Vrcek V. Kowalski K. Chen Y. Organometallics 2017; 36: 1673
  • 19 Solecka J. Łysek R. Furman B. Chmielewski M. Kurzątkowski W. Acta Pol. Pharm. 2003; 60: 115
  • 20 Georgopapadakou NH. Liu FY. Ryono DE. Neubeck R. Gordon EM. Pluscec J. Anal. Biochem. 1984; 137: 125
  • 21 Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard—Eighth Edition. CLSI document M07-A8. Clinical and Laboratory Standards Institute; Wayne, PA: 2009