Synlett 2018; 29(09): 1232-1238
DOI: 10.1055/s-0037-1609320
letter
© Georg Thieme Verlag Stuttgart · New York

Fe(III)/l-Valine-Catalyzed One-Pot Synthesis of N-Sulfinyl- and N-Sulfonylimines via Oxidative Cascade Reaction of Alcohols with Sulfinamides or Sulfonamides

Guofu Zhang
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: [email protected]   Email: [email protected]
,
Yunzhe Xing
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: [email protected]   Email: [email protected]
,
Shengjun Xu
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: [email protected]   Email: [email protected]
,
Chengrong Ding*
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: [email protected]   Email: [email protected]
,
Shang Shan*
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: [email protected]   Email: [email protected]
› Author Affiliations
We acknowledge financial support from the National Natural Science Foundation of China (no. 21506189), the National Natural Science Foundation of China (no. 20702051), the Natural Science Foundation of Zhejiang Province (LY13B020017) and the Key Innovation Team of Science and Technology in Zhejiang Province (no. 2010R50018).
Further Information

Publication History

Received: 26 November 2017

Accepted after revision: 29 January 2018

Publication Date:
05 March 2018 (online)


Abstract

An efficient Fe(III), l-valine, and 4-OH-TEMPO catalytic system was found for the oxidation of alcohols followed by condensation with sulfinamide or sulfonamide in one pot for the synthesis of N-sulfinyl- and N-sulfonylimines compounds under mild conditions. This transformation accommodates a variety of substrates, shows high functional-group tolerance, and affords the corresponding products in good to excellent yields.

Supporting Information

 
  • References and Notes

  • 1 Belowich ME. Stoddart JF. Chem. Soc. Rev. 2012; 41: 2003
  • 2 Pablo O. Collados JF. Harutyunyan SR. Eur. J. Org. Chem. 2016; 2016: 1247
  • 3 Zhou P. Chen BC. Davis FA. Tetrahedron 2004; 60: 8003
    • 4a Bégué JP. Bonnet-Delpon D. Crousse B. Legros J. Chem. Soc. Rev. 2005; 34: 562
    • 4b Weinreb SM. Orr RK. Synthesis 2005; 1205
    • 4c Senanayake CH. Krishnamurthy D. Lu ZH. Han Z. Gallou I. Aldrichimica Acta 2005; 38: 93
    • 4d Gohain M. Synlett 2003; 2097
    • 4e Ellman JA. Pure Appl. Chem. 2003; 75: 39
    • 4f Ellman JA. Owens TD. Tang TP. Acc. Chem. Res. 2002; 35: 984
    • 4g Davis FA. Zhou P. Chen BC. Chem. Soc. Rev. 1998; 27: 13
    • 4h Bloch R. Chem. Rev. 1998; 98: 1407
    • 4i Enders D. Reinhold U. Tetrahedron: Asymmetry 1997; 8: 1895
    • 5a Nakamura S. Hayashi M. Hiramatsu Y. Shibata N. Funahashi Y. Toru T. J. Am. Chem. Soc. 2009; 131: 18240
    • 5b Tan C. Liu X. Wang L. Wang J. Feng X. Org. Lett. 2008; 10: 5305
    • 5c Hou Z. Wang J. Liu X. Feng X. Chem. Eur. J. 2008; 14: 4484
    • 5d Ooi T. Uematsu Y. Maruoka K. J. Am. Chem. Soc. 2006; 128: 2548
    • 5e Duan HF. Jia YX. Wang LX. Zhou QL. Org. Lett. 2006; 8: 2567
    • 5f Fujisawa H. Takahashi E. Mukaiyama T. Chem. Eur. J. 2006; 12: 5082
    • 5g Soeta T. Kuriyama M. Tomioka K. J. Org. Chem. 2005; 70: 297
    • 5h Hayashi T. Kawai M. Tokunaga N. Angew. Chem. Int. Ed. 2004; 43: 6125
    • 5i Wipf P. Kendall C. Stephenson CR. J. J. Am. Chem. Soc. 2003; 125: 761
    • 5j Aggarwal VK. Alonso E. Ferrara M. Spey SE. J. Org. Chem. 2002; 67: 2335
    • 6a Kwak SH. Lee SA. Lee KI. Tetrahedron: Asymmetry 2010; 21: 800
    • 6b Yang Q. Shang G. Gao W. Deng J. Zhang X. Angew. Chem. Int. Ed. 2006; 45: 3832
  • 7 Yamada KI. Fujihara H. Yamamoto Y. Miwa Y. Taga T. Tomioka K. Org. Lett. 2002; 4: 3509
    • 8a Morales S. Guijarro FG. Garcia Ruano JL. Cid MB. J. Am. Chem. Soc. 2014; 136: 1082
    • 8b Morgan PE. McCague R. Whiting A. J. Chem. Soc., Perkin Trans. 1 2000; 515
    • 8c Yao S. Johannsen M. Hazell RG. Jørgensen KA. Angew. Chem. Int. Ed. 1998; 37: 3121
    • 8d Bauer T. Szymański S. Jezewski A. Gluziński P. Jurczak J. Tetrahedron: Asymmetry 1997; 8: 2619
    • 8e Sisko J. Weinreb SM. Tetrahedron Lett. 1989; 30: 3037
    • 9a Heuer H. Smalla K. Environ. Microbiol. 2007; 9: 657
    • 9b Wahl C. Liptay S. Adler G. Schmid RM. J. Clin. Invest. 1998; 101: 1163
    • 9c Trube G. Rorsman P. Ohnoshosaku T. Pflugers. Arch. 1986; 407: 493
    • 9d Moore PR. Evenson A. Luckey TD. Mccoy E. Elvehjem CA. Hart EB. J. Biol. Chem. 1946; 165: 437
    • 10a Zolfigol MA. Tavasoli M. Moosavi-Zare AR. Arghavani-Hadi P. Zare A. Khakyzadeh V. RSC Adv. 2013; 3: 7692
    • 10b Shintani R. Takeda M. Soh YT. Ito T. Hayashi T. Org. Lett. 2011; 13: 2977
    • 10c Wu XF. Vovard-Le Bray C. Bechki L. Darcel C. Tetrahedron 2009; 65: 7380
    • 10d García Ruano JL. Alemán J. Cid MB. Parra A. Org. Lett. 2005; 7: 179
    • 10e Wynne JH. Price SE. Rorer JR. Stalick WM. Synth. Commun. 2003; 33: 341
    • 10f Ram RN. Khan AA. Synth. Commun. 2001; 31: 841
    • 10g Artman Iii GD. Bartolozzi A. Franck RW. Weinreb SM. Synlett 2001; 232
    • 10h Boger DL. Corbett WL. Curran TT. Kasper AM. J. Am. Chem. Soc. 1991; 113: 1713
    • 10i Jennings WB. Lovely CJ. Tetrahedron Lett. 1988; 29: 3725
  • 11 Hasaninejad A. Zare A. Sharghi H. Shekouhy M. ARKIVOC 2008; (xi): 64
    • 12a Moreau P. Essiz M. Mérour JY. Bouzard D. Tetra­hedron: Asymmetry 1997; 8: 591
    • 12b Liu G. Cogan DA. Ellman JA. J. Am. Chem. Soc. 1997; 119: 9913
    • 12c Yang TK. Chen RY. Lee DS. Peng WS. Jiang YZ. Mi AQ. Jong TT. J. Org. Chem. 1994; 59: 914
    • 12d Davis FA. Reddy RE. Szewczyk JM. Portonovo PS. Tetrahedron Lett. 1993; 34: 6229
    • 12e Hua DH. Miao SW. Chen JS. Iguchi S. J. Org. Chem. 1991; 56: 4
    • 12f Annunziata R. Cinquini M. Cozzi F. Raimondi L. Gazz. Chim. Ital. 1989; 119: 253
    • 13a Phillips F. Martins AM. M. Pombeiro A. Kopylovich M. ChemCatChem 2016; 9: 217
    • 13b Barta K. Ford PC. Acc. Chem. Res. 2014; 47: 1503
    • 14a Zhang G. Lei J. Han X. Luan Y. Ding C. Shan S. Synlett 2015; 26: 779
    • 14b Zhang G. Han X. Luan Y. Wang Y. Wen X. Xu L. Ding C. Gao J. RSC Adv. 2013; 3: 19255
    • 14c Zhang G. Han X. Luan Y. Wang Y. Wen X. Ding C. Chem. Commun. 2013; 49: 7908
  • 15 Patel R. Srivastava VP. Yadav LD. S. Adv. Synth. Catal. 2010; 352: 1610
  • 16 Zhang G. Xu S. Xie X. Ding C. Shan S. RSC Adv. 2017; 7: 9431
  • 17 Zhang G. Li S. Lei J. Zhang G. Xie X. Ding C. Liu R. Synlett 2016; 27: 956
  • 18 Dijksman A. Arends IW. C. E. Sheldon RA. Org. Bio. Chem. 2003; 1: 3232
  • 19 Typical Procedure for the Synthesis of N-Sulfinylimine [(±)-N-Benzylidene-p-toluenesulfinamide]: A mixture of p-toluenesulfinamide (0.0621 g, 0.4 mmol), phenylmethanol (0.0648 g, 0.6 mmol), l-valine (0.0047 g, 0.04 mmol), FeCl3 (0.0065 g, 0.04 mmol), 4-OH-TEMPO (0.0138 g, 0.08 mmol), toluene (2.5 mL), and 4 Å MS (0.7000 g) were added to a 100-mL Schlenk tube. Then the resulting mixture was vigorously stirred under O2 (1 atm) at 60 °C for 24 h. After the reaction was complete, the residue was filtered off, and the solvent was removed under vacuum to give the crude product, which was purified by column chromatography on silica gel to give the pure product 3aa. 1H NMR (500 MHz, CDCl3): δ = 8.77 (s, 1 H), 7.82–7.90 (m, 2 H), 7.65 (d, J = 8.2 Hz, 2 H), 7.51 (t, J = 8.6 Hz, 1 H), 7.46 (t, J = 7.3 Hz, 2 H), 7.32 (d, J = 8.0 Hz, 2 H), 2.40 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 160.67, 141.84, 141.73, 133.93, 132.59, 129.85, 129.60, 128.90, 124.82, 21.43.
  • 20 Typical Procedure for the Synthesis of N-Sulfonylimine [(E)-N-Benzylidene-p-toluenesulfonamide]: A mixture of p-toluene­sulfonamide (0.0685 g, 0.4 mmol), phenylmethanol (0.0648 g, 0.6 mmol), l-valine (0.0047 g, 0.04 mmol), FeCl3 (0.0065 g, 0.04 mmol), 4-OH-TEMPO (0.0138 g, 0.08 mmol), toluene (2.5 mL), and 4 Å MS (0.7000 g) were added to a 100-mL Schlenk tube. Then the resulting mixture was vigorously stirred under O2 (1 atm) at 60 °C for 24 h. After the reaction was complete, the residue was filtered off, and the solvent was removed under vacuum to give the crude product, which was purified by flash column chromatography or purified by precipitation from CH2Cl2–pentane to give the pure product 3ea. 1H NMR (500 MHz, CDCl3): δ = 9.05 (s, 1 H), 7.93 (ddd, J = 17.4, 7.4, 1.6 Hz, 4 H), 7.60–7.67 (m, 1 H), 7.50 (t, J = 7.8 Hz, 2 H), 7.36 (d, J = 8.1 Hz, 2 H), 2.45 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 170.13, 144.60, 134.92, 132.42, 131.30, 129.81, 129.14, 128.11, 126.48, 21.66.