Synlett 2018; 29(14): 1902-1908
DOI: 10.1055/s-0037-1609553
letter
© Georg Thieme Verlag Stuttgart · New York

Metal-Free One-Pot Chemoselective Thiocyanation of Imidazothiazoles and 2-Aminothiazoles with in situ Generated N-Thiocyanatosuccinimide

Shuddhodan N. Kadam
School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded (MS), 431606, India   Email: [email protected]
,
Ajay N. Ambhore
School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded (MS), 431606, India   Email: [email protected]
,
Madhav J. Hebade
School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded (MS), 431606, India   Email: [email protected]
,
Rahul D. Kamble
School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded (MS), 431606, India   Email: [email protected]
,
Shrikant V. Hese
School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded (MS), 431606, India   Email: [email protected]
,
Milind V. Gaikwad
School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded (MS), 431606, India   Email: [email protected]
,
Priya D. Gavhane
School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded (MS), 431606, India   Email: [email protected]
,
Bhaskar S. Dawane*
School of Chemical Sciences, Swami Ramanand Teerth Marathwada University, Nanded (MS), 431606, India   Email: [email protected]
› Author Affiliations
S.N.K. (F.No. 38/07/14), M.J.H. (F.No 31/21/14), and A.N.A. (F.No. 36/33/14) are grateful to the University Grants Commission for ­providing a teacher fellowship under the Faculty Development ­Programme scheme.
Further Information

Publication History

Received: 01 April 2018

Accepted after revision: 09 June 2018

Publication Date:
23 July 2018 (online)


Abstract

A chemoselective thiocyanation of imidazothiazoles and 2-aminothiazoles with use of in situ generated N-thiocyanatosuccinimide (NTS) at room temperature is described. The protocol offers mild reaction conditions and high chemoselectivity for electrophilic substitution in imidazothiazoles over nucleophilic substitution. This method provides metal-free and easy conversion of imidazothiazoles and 2-aminothiazoles into their corresponding C-3 and C-5 thiocyanates, respectively, in good to excellent yield. The present protocol also offers the effective thiocyanation of bifunctional imidazothiazoles containing ­aliphatic –OH and C(sp2)–H bond functionalities.

Supporting Information

 
  • References

    • 1a Still IW. Toste FD. J. Org. Chem. 1996; 61: 7677
    • 1b Nguyen T. Rubinstein M. Wakselman C. J. Org. Chem. 1981; 46: 1938
  • 2 Riemschneider R. Wojahn F. Orlick G. J. Am. Chem. Soc. 1951; 73: 5905
  • 3 Kianmehr E. Ghanbari M. Niri MN. Faramarzi R. J. Comb. Chem. 2010; 12: 41
  • 4 Demko ZP. Sharpless KB. Org. Lett. 2001; 3: 4091
  • 5 Pawliczek M. Garve LK. Werz DB. Org. Lett. 2015; 17: 1716
  • 6 Blanco JM. Caamano O. Fernandez F. Gomez G. Lopez C. Tetrahedron: Asymmetry 1992; 3: 749
  • 7 Aoyama T. Murata S. Takido T. Kodomari M. Tetrahedron 2007; 63: 1933
  • 8 Kitagawa I. Ueda Y. Kawasaki T. Mosettin E. J. Org. Chem. 1963; 46: 3335
  • 9 Laufer SA. Liedtke AJ. Tetrahedron Lett. 2006; 47: 7199
    • 11a Fujiki K. Yoshida E. Synth. Commun. 1999; 29: 3289
    • 11b Suzuki H. Abe H. Synth. Commun. 1996; 26: 3413
    • 11c Kita Y. Takada T. Mihara S. Whelan BA. Tohma H. J. Org. Chem. 1995; 22: 7144
    • 11d Chakrabarty M. Sarkar S. Tetrahedron Lett. 2003; 27: 8131
    • 11e Barbero M. Degani I. Diulgheroff N. Dughera S. Fochi R. Synthesis 2005; 0961
    • 11f Zhu D. Chang D. Shi L. Chem. Commun. 2015; 51: 7180
    • 11g Mete TB. Khopade TM. Bhat RG. Tetrahedron Lett. 2017; 5: 415
    • 11h Modi A. Patel BK. Org. Lett. 2017; 19: 432
    • 11i Kisat AR. Mehrjardi MF. Catal. Commun. 2008; 9: 1497
    • 12a Castanheiro T. Suffert J. Donnard M. Gulea M. Chem. Soc. Rev. 2016; 45: 494
    • 12b Banerjee A. Santra SK. Rout SK. Patel BK. Tetrahedron 2013; 69: 9096
    • 12c Yadav AK. Yadav LD. S. Tetrahedron Lett. 2015; 56: 6696
    • 12d Kokorekin VA. Sigacheva VL. Petrosyan VA. Tetrahedron Lett. 2014; 55: 4306
    • 12e Zhang H. Wang X. Zhang K. Teo BK. Coord. Chem. Rev. 1999; 183: 157
    • 12f Barysnikov GV. Galagan RL. Shepetun LP. Litvin VA. Minaev BF. J. Mol. Struct. 2015; 1096: 15
    • 13a Mokhtari B. Azadi R. Mardani E. Tetrahedron Lett. 2012; 53: 491
    • 13b Yadav JS. Reddy BS. Shubashree S. Sadashiv K. Tetrahedron Lett. 2004; 45: 2951
    • 14a Yang D. Yan K. Wei W. Li G. Lu S. Zhao C. Tian L. Wang H. J. Org. Chem. 2015; 80: 11073
    • 14b Zhang XZ. Ge DL. Chen SY. Yu XQ. RSC Adv. 2016; 6: 66320
    • 14c Nikoofar K. Chem. Sci. Trans. 2013; 2: 691
    • 14d Toste FD. Stefano VD. Still IW. Synth. Commun. 1995; 25: 1277
    • 15a Ichake SS. Rajawinslin RR. Kavala V. Villuri BK. Yang HT. Kuo CW. Yao CF. Asian J. Org. Chem. 2016; 5: 343
    • 15b Bhalerao DS. Akamanchi KG. Synth. Commun. 2010; 40: 799
    • 15c Bhalerao DS. Akamanchi KG. Synlett 2007; 2952
    • 16a Mitra S. Ghosh M. Mishra S. Hajra A. J. Org. Chem. 2015; 80: 8275
    • 16b Nikoofar K. Chem. Sci. Trans. 2013; 2: 691
    • 16c Fan W. Yang Q. Xu F. Li P. J. Org. Chem. 2014; 79: 10588
    • 16d Das B. Kumar AS. Synth. Commun. 2010; 40: 337
    • 16e Zhang H. Wei Q. Wei S. Qu J. Wang B. Eur. J. Org. Chem. 2016; 20: 3373
    • 17a Chandy ML. Soman C. Kumar SP. Kurup S. Jose R. J. Oral Maxillofac. Surg. Med. Pathol. 2016; 28: 354
    • 17b Abdel-Wahab BF. Khidre RE. Awad GE. J. Heterocyclic Chem. 2017; 54: 489
    • 17c Noolvi MN. Patel HM. Singh N. Gadad AK. Cameotra SS. Badiger A. Eur. J. Med. Chem. 2011; 46: 4411
    • 17d Park JH. El-Gamal MI. Lee YS. Oh CH. Eur. J. Med. Chem. 2011; 46: 5769
    • 17e Shetty NS. Khazi IA. M. Ahn C. Bull. Korean Chem. Soc. 2010; 31: 2337
    • 17f Aldreani A. Granaiola M. Leoni A. Locatelli A. Morigi R. Rambaldi M. Eur. J. Med. Chem. 2001; 36: 743
    • 17g Gadad AK. Noolvi MN. Karpoormath RV. Bioorg. Med. Chem. 2004; 12: 5651
    • 17h Scribner A. Meitz S. Fisher M. Wyvratt M. Leavitt P. Gurnett A. Brown C. Mathew J. Thompson D. Schmatz D. Biftu T. Bioorg. Med. Chem. Lett. 2008; 18: 5263
    • 18a Kashyap SJ. Garg VK. Sharma PK. Kumar N. Dudhe R. Gupta JK. Med. Chem. Res. 2012; 21: 2123
    • 18b Lu Y. Li CM. Wang Z. Ross CR. Chen J. Dalton JT. Li W. Miller DD. J. Med. Chem. 2009; 52: 1701
    • 18c Shiradkar MR. Murahari KK. Gangadasu HR. Suresh T. Kalyan CA. Panchal D. Kaur R. Burange P. Ghogare J. Mokale V. Raut M. Bioorg. Med. Chem. 2007; 15: 3997
    • 18d Chimenti F. Bizzarri B. Bolasco A. Secci D. Chimenti P. Granese A. Carradori S. D’Ascenzio M. Lilli D. Rivanera D. Eur. J. Med. Chem. 2011; 46: 378
    • 18e Bondock S. Khalifa W. Fadda AA. Eur. J. Med. Chem. 2007; 42: 948
    • 18f Siddiqui N. Ahsan W. Eur. J. Med. Chem. 2010; 45: 1536
    • 19a Lin XD. Yang HW. Ma S. Li WW. Zhang CH. Wang WJ. Xiang R. Li LL. Yang SY. Bioorg. Med. Chem. Lett. 2015; 25: 4534
    • 19b Karki SS. Panjamurthy K. Kumar S. Nambiar M. Ramareddy SA. Chiruvella KK. Raghavan SC. Eur. J. Med. Chem. 2011; 46: 2109
    • 19c Aryanasab F. Halimehjani AZ. Saidi MR. Tetrahedron Lett. 2010; 51: 790
    • 19d Sayed AR. Tetrahedron Lett. 2010; 51: 4490
    • 19e Reddy GM. Garcia JR. Reddy VH. De Andrade AM. Camilo A. Ribeiro RA. P. De Lazaro SR. Eur. J. Med. Chem. 2016; 123: 508
    • 19f Jo H. Zhou Y. Viji M. Choi M. Lim JY. Sim J. Rhee J. Kim Y. Seo S-Y. Kim W-J. Hong TJ. Lee H. Lee K. Jung J-K. Bioorg. Med. Chem. 2017; 27: 4854
    • 19g Neochoritis C. Eleftheriadis N. Tsoleridis CA. Stephanidou-Stephanatou J. Tetrahedron 2010; 66: 709
    • 19h Ramprasad J. Nayak N. Dalimba U. Yogeeswari P. Sriram D. Peethambar SK. Achur R. Santosh Kumar HS. Eur. J. Med. Chem. 2015; 95: 49
    • 20a Mokhtari B. Azadi R. Rahmani-Nezhad S. Tetrahedron Lett. 2009; 50: 6588
    • 20b Iranpoor N. Firouzabadi H. Azadi R. Tetrahedron Lett. 2006; 47: 5531
    • 20c Iranpoor N. Firouzabadi H. Akhlaghinia B. Azadi R. Synthesis 2004; 92
    • 20d Karimi ZM. A. Tabatabaei BA. J. Sulfur Chem. 2015; 36: 403
    • 20e Khazaei A. Rahmati S. Nezhad KA. Saednia S. J. Fluorine Chem. 2012; 137: 123
    • 20f Iranpoor N. Firouzabadi H. Azadi R. Akhlaghinia B. J. Sulfur Chem. 2005; 26: 133
    • 20g Iranpoor N. Firouzabadi H. Shaterian HR. Tetrahedron Lett. 2002; 43: 3439
  • 21 Hebade MJ. Kamble RD. Hese SV. Mogle PP. Ambhore AN. Kadam SN. Dawane BS. Phosphorus Sulfur Silicon Relat. Elem. 2016; 191: 1155
    • 22a Sheldon RA. Green Chem. 2005; 7: 267
    • 22b Chen J. Spear SK. Huddleston JG. Rogers RD. Green Chem. 2005; 7: 64
    • 23a Saikia I. Borah AJ. Phukan P. Chem. Rev. 2016; 116: 6837
    • 23b Reddy BS. Reddy SM. S. Madan C. Tetrahedron Lett. 2011; 52: 1432
    • 23c Chhattise PK. Ramaswamy AV. Waghmode SB. Tetrahedron Lett. 2008; 49: 189
    • 23d Ashby MT. Aneetha H. J. Am. Chem. Soc. 2004; 126: 10216
    • 24a Borzilleri RM. Bhide RS. Barrish JC. Darenzo CJ. Derbin GM. Fargnoli J. Hunt JT. Jeyaseena R. Kamath A. Kukral DW. Marathe P. Mortillo S. Qian L. Tokarski JS. Wautlet BS. Zheng X. Lombordo LJ. J. Med. Chem. 2006; 49: 3766
    • 24b Misra RN. Xiao HY. Kim KS. Han WC. Barbosa SA. Hunt JT. Rawlins DB. Shan W. Ahmad SZ. Qian L. Chen BS. Zhao R. Bendnarz MS. Kellar KA. Mulheron JG. Batorsky R. Roongta U. Kamath A. Marathe P. Ranadive SA. Sack JS. Tokrski JS. Paletich NP. Lee FY. F. Webster KR. Kimball SD. J. Med. Chem. 2004; 47: 1719
  • 25 Procedure for the Synthesis of 1-(6-(4-Chlorophenyl)-3-methyl-5-thiocyanatoimidazo[2,1-b]thiazol-2-yl)ethanol (2a) (Table [1]) A dried 50 mL round-bottomed flask was charged with NBS (177.98 mg, 1 mmol), NH4SCN (152.24 mg, 2.0 mmol) in PEG-400 (3 mL) and the reaction mixture was stirred at r.t. for 15 min. The reaction mixture turned milky indicating generation of NTS (shown by TLC). Next, reactant 1a (292.78 mg, 1 mmol) was added slowly, and the reaction mixture was further stirred for 3 h. After completion of the reaction as indicated by TLC, cold water (20 mL) was added to separate the solid product. The white solid was filtered, dried, and washed with cold aqueous ethanol (0.93 mmol, 93% yield). Compound 2a: Mp 111–113 °C. FT-IR: 3195, 2966, 2154, 1893, 1644 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 7.94 (d, 2 H, J = 8.0 Hz), 7.62 (s, 2 H), 5.96 (s, 1 H), 5.17 (s, 1 H), 2.73 (s, 3 H), 1.41 (s, 3 H) ppm. 13C{1H} NMR (100 MHZ, DMSO-d 6): δ = 152.62, 152.11, 134.68, 134.20, 131.36, 129.84, 128.87, 124.27, 111.02, 97.97, 62.25, 25.24, 12.39 ppm. HRMS (ESI-TOF): m/z [M + H]+ calcd for C15H12ClN3OS2: 349.0110; found: 350.0174. Procedure for the Synthesis of 5-thiocyanato-4-(p-tolyl)thiazol-2-amine (4f) (Scheme [4]) A dried round-bottomed flask was charged with NBS (177.98 mg, 1.0 mmol) and NH4SCN (152.24 mg, 2.0 mmol). PEG-400 (3 mL) was added and reaction mixture was stirred at r.t. for 15 min. Formation of a milky color indicated the generation of NTS (shown by TLC). Then, 4-(p-tolyl)thiazol-2-amine (190.26 mg, 1 mmol) was added slowly, and the reaction mixture was further stirred for 3 h. When completion of the reaction was indicated by TLC, the product was separated by addition of cold water (20 mL). The white solid product was filtered, dried, and washed with cold aqueous ethanol (0.78 mmol, 78% yield). Compound 4f: Mp 134–136 °C. FT-IR: 3372, 3269, 3045, 2100, 1612 cm–1. 1H NMR (400 MHz, DMSO-d 6): δ = 7.88 (s, 2 H), 7.69–7.31 (m, 4 H), 2.52 (s, 3 H) ppm. 13C{1H} NMR (100 MHZ, DMSO-d 6): δ = 171.25, 259.25, 139.14, 130.64, 129.39, 129.18, 129.01, 112.57, 21.39 ppm. HRMS (ESI-TOF): m/z [M + H]+ calcd for C11H9N3S2: 247.0238; found: 248.0305.