Synthesis 2018; 50(14): 2768-2774
DOI: 10.1055/s-0037-1609720
paper
© Georg Thieme Verlag Stuttgart · New York

A Mild Multi-Component Reaction for the Synthesis of 4,5-Disubstituted 1H-1,2,3-Triazoles from Phosphonium Salts, Aldehydes, and Sodium Azide

Guang-Long Wu
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China   Email: qpwu@bit.edu.cn
,
Qin-Pei Wu*
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China   Email: qpwu@bit.edu.cn
› Author Affiliations
This work was financially supported by the National Science Foundation of China (Grant No. 21172019).

Further Information

Publication History

Received: 25 January 2018

Accepted after revision: 27 March 2018

Publication Date:
08 May 2018 (online)


Abstract

A mild and metal-free multi-component reaction to synthesize 4,5-disubstituted 1H-1,2,3-triazoles from phosphonium salts, aldehydes, and sodium azide is described. The process undergoes an organocatalyzed coupling of formyl group with phosphonium to form a key intermediate, olefinic phosphonium salt, which is followed by the [3+2] cycloaddition of the azide to the activated alkene. A series of representative 4,5-disubstituted 1H-1,2,3-triazoles were prepared.

Supporting Information

 
  • References

    • 1a Meldal M. Tornøe CW. Chem. Rev. 2008; 108: 2952
    • 1b Wacharasindhu S. Bardhan S. Wan ZK. Tabei K. Mansour TS. J. Am. Chem. Soc. 2009; 131: 4174
    • 1c Liu Y. Yan W. Chen Y. Petersen JL. Shi X. Org. Lett. 2008; 10: 5385
    • 1d Katritzky AR. Bobrov S. Kirichenko K. Ji Y. Steel PJ. J. Org. Chem. 2003; 68: 5713
    • 1e Reid AK. McHugh CJ. Richie G. Graham D. Tetrahedron Lett. 2006; 47: 4201
    • 1f Verma AK. Singh J. Chaudhary R. Tetrahedron Lett. 2007; 48: 7199
    • 1g Dai Q. Gao W. Liu D. Kapzes LM. Zhang X. J. Org. Chem. 2006; 71: 3928
    • 1h Jin T. Kamijo S. Yamamoto Y. J. Org. Chem. 2004; 69: 3789
    • 2a Kolb HC. Sharpless KB. Drug Discov. Today 2003; 8: 1128
    • 2b Manetsch R. Krasiski A. Radi Z. Raushel J. Taylor P. Sharpless KB. Kolb HC. J. Am. Chem. Soc. 2004; 126: 12809
    • 2c Whiting M. Muldoon J. Lin YC. Silverman SM. Lindstrom W. Olson AJ. Kolb HC. Finn MG. Sharpless KB. Elder JH. Fokin VV. Angew. Chem. Int. Ed. 2006; 45: 1435
    • 2d Wang J. Sui G. Mocharla VP. Lin RJ. Phelps ME. Kolb HC. Tseng HR. Angew. Chem. Int. Ed. 2006; 45: 5276
    • 2e Sugawara A. Sunazuka T. Hirose T. Nagai K. Yamaguchi Y. Hanaki H. Sharpless KB. Omura S. Bioorg. Med. Chem. Lett. 2007; 17: 6340
    • 2f Chen H. Taylor JL. Abrams SR. Bioorg. Med. Chem. Lett. 2007; 17: 1979
    • 2g Moorhouse AD. Moses JE. ChemMedChem 2008; 3: 715
    • 2h Tron GC. Pirali T. Billington RA. Canonico PL. Sorba G. Genazzani AA. Med. Res. Rev. 2008; 28: 278
    • 3a Wu P. Feldman AK. Nugent AK. Hawker CJ. Scheel A. Voit B. Pyun J. Fre’chet JM. J. Sharpless KB. Fokin VV. Angew. Chem. Int. Ed. 2004; 43: 3928
    • 3b Aucagne V. Ha’nni KD. Leigh DA. Lusby PJ. Walker DB. J. Am. Chem. Soc. 2006; 128: 2186
    • 3c Ye CF. Gard GL. Winter RW. Syvret RG. Twamley B. Shreeve JM. Org. Lett. 2007; 9: 3841
    • 3d Liu QC. Zhao P. Chen YM. J. Polym. Sci., Part A: Polym. Chem. 2007; 45: 3330
    • 3e Nandivada H. Jiang XW. Lahann J. Adv. Mater. 2007; 19: 2197
    • 3f Angelos S. Yang YW. Patel K. Stoddart JF. Zink JI. Angew. Chem. Int. Ed. 2008; 45: 1435

      Selected examples of methods for synthesizing 1,2,3-triazoles:
    • 4a Journet M. Cai D. Kowal JJ. Larsen RD. Tetrahedron Lett. 2001; 42: 9117
    • 4b Coats SJ. Link JS. Gauthier D. Hlasta D. Org. Lett. 2005; 7: 1469
    • 4c Gracias V. Darczak D. Gasiecki AF. Djuric SW. Tetrahedron Lett. 2005; 46: 9053
    • 4d Majireck M. Weinreb SM. J. Org. Chem. 2006; 71: 8680
    • 4e Aucagne V. Leigh DA. Org. Lett. 2006; 8: 4505
    • 4f Boren BC. Narayan S. Rasmussen LK. Zhang L. Zhao H. Lin Z. Jia G. Fokin V. J. Am. Chem. Soc. 2008; 130: 8923
    • 5a Journet M. Cai D. Kowal JJ. Tetrahedron Lett. 2001; 42: 9117
    • 5b Zefirov NS. Chapovskaya NK. Kolesnikov VV. J. Chem. Soc., Chem. Commun. 1971; 1001
    • 5c Quiclet-Sire B. Zard SZ. Synthesis 2005; 3319
    • 5d Wang T. Hu XC. Huang XJ. J. Braz. Chem. Soc. 2012; 23: 1119
    • 5e Hu Q. Liu Y. Deng X. Adv. Synth. Catal. 2016; 358: 1689
    • 5f Gao Y. Lam Y. Org. Lett. 2006; 8: 3283
    • 5g Augustine JK. Boodappa C. Venkatachaliah S. Org. Biomol. Chem. 2014; 12: 2280
    • 5h Chai H. Guo R. Yin W. ACS Comb. Sci. 2015; 17: 147
    • 5i Ponpandian T. Muthusubramanian S. Tetrahedron Lett. 2012; 53: 59
    • 5j Wu L. Wang X. Chen Y. Synlett 2016; 27: 437
    • 5k Thomas J. John J. Parekh N. Dehaen W. Angew. Chem. Int. Ed. 2014; 53: 10155
    • 6a Wittig G. Geissler G. Justus Liebigs Ann. Chem. 1953; 580: 44
    • 6b Maryanoff BE. Reitz AB. Chem. Rev. 1989; 89: 863
    • 6c Cattelan L. Noe M. Selva M. Demitri N. Perosa A. ChemSusChem 2015; 8: 3963
    • 6d Lémaire S. Houpis I. Wechselberger R. Langens J. Vermeulen WA. A. Smets N. Nettekoven U. Wang Y. Xiao T. Qu H. Liu R. Jonckers TH. M. Raboisson P. Vandyck K. Nilsson KM. Farina V. J. Org. Chem. 2011; 76: 297
    • 6e Spallarossa M. Wang Q. Riva R. Zhu J. Org. Lett. 2016; 18: 1622
    • 6f Mysĺiwiec D. Lis T. Gregoliński J. Stępień M. J. Org. Chem. 2015; 80: 6300
    • 6g Xia X. Toy PH. Synlett 2015; 26: 1737
    • 6h Cachatra V. Almeida A. Sardinha J. Lucas SD. Gomes A. Vaz PD. Florêncio MH. Nunes R. Vila-Viçosa D. Calhorda MJ. Rauter AP. Org. Lett. 2015; 17: 5622
    • 6i Sengupta S. Duan H. Lu W. Petersen JL. Shi X. Org. Lett. 2008; 10: 1493
    • 6j Schirmer ML. Adomeit S. Werner T. Org. Lett. 2015; 17: 3078
  • 7 Wu G.-L. Wu Q.-P. Adv. Synth. Catal. 2018; 360: in press, DOI: 10.1002/adsc.201701587
    • 9a El-Batta A. Jiang C. Zhao W. Anness R. Cooksy AL. Bergdahl M. J. Org. Chem. 2007; 72: 5244
    • 9b Bazhenov DN. Pevzner MS. Ostrovsh Gindin VA. Shcherbinin NB. Zhniaev VN. Zh. Org. Khim. 1994; 30: 791
    • 9c Hudson RF. Chopard PA. J. Org. Chem. 1963; 28: 2446
  • 10 The LCMS data for monitoring the reaction of synthesizing compound 3h and the 31P NMR spectrum of the triphenylphosine by-product are provided in the Supporting Information.
    • 11a Li AH. Dai LX. Chem. Rev. 1997; 97: 2341
    • 11b Xie P. Huang Y. Org. Biomol. Chem. 2015; 13: 8578
    • 12a Northtrup AB. MacMillan DW. C. J. Am. Chem. Soc. 2002; 124: 6798
    • 12b Storer RI. MacMillan DW. C. Tetrahedron 2004; 60: 7705
    • 13a Byrne PA. Gilheany DG. Chem. Soc. Rev. 2013; 42: 6670
    • 13b Sugiura M. Ashikari Y. Nakaijima M. J. Org. Chem. 2015; 80: 8830
    • 14a Augustine JK. Boodappa C. Venkatachaliah S. Org. Biomol. Chem. 2014; 12: 2280
    • 14b Ye LW. Han X. Sun XL. Tang Y. Tetrahedron 2008; 64: 1487
    • 15a Du Y. Lu X. Zhang C. Angew. Chem. Int. Ed. 2003; 42: 1035
    • 15b Xie P. Huang Y. Org. Biomol. Chem. 2015; 13: 8578
    • 15c Zhou R. He Z. Eur. J. Org. Chem. 2016; 11: 1937
  • 16 Rolf HP. Pasquale R. Aust. J. Chem. 1994; 47: 1375
  • 17 Amantini DF. Piermatti O. Pizzo F. Zunino E. Vaccaro L. J. Org. Chem. 2005; 70: 6526
  • 18 Berestovitskaya VM. Baichurin RI. Aboskalova NI. Baichurina LV. Trukhin EV. Fel’gendler AV. Gensirovskaya MA. Russ. J. Gen. Chem. 2016; 86: 1266
  • 19 Chen Y. Hu Q. Liu Y. Faming Zhuanli Shenqing 2016; 105541796 . Chem. Abstr. 2016, 164, 602163
  • 20 Shin C. Yonezawa Y. Yoshimura J. Tetrahedron Lett. 1974; 15: 7
  • 21 Li J. Wang D. Zhang Y. Li J. Chen B. Org. Lett. 2009; 11: 3024
  • 22 Zhu Y. Li J. Liu R. Huaxue Shiji 2016; 38: 565 . Chem. Abstr. 2016, 165, 416564
  • 23 Cheng Z. Li W. He F. Zhou J. Zhu X. Bioorg. Med. Chem. 2007; 15: 1533