Synthesis 2018; 50(22): 4462-4470
DOI: 10.1055/s-0037-1609858
© Georg Thieme Verlag Stuttgart · New York

Site-Selective, Catalyst-Controlled Alkene Aziridination

Amirah S. Mat Lani
Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison WI 53706, USA   Email:
Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison WI 53706, USA   Email:
› Author Affiliations
This work was funded by NSF Award 1664374 and the Wisconsin Alumni Research Foundation to J.M.S. The NMR facilities at UW-Madison are funded by the NSF (CHE-9208463, CHE-9629688) and NIH (RR08389-01). The National Magnetic Resonance Facility at Madison is supported by the NIH (P41GM103399, S10RR08438 and S10RR029220) and the NSF (BIR-0214394). The purchase of the Thermo Q Exactive™ Plus in 2015 for mass spectrometry was funded by NIH Award 1S10 OD020022-1 to the Department of Chemistry.
Further Information

Publication History

Received: 05 April 2018

Accepted after revision: 27 April 2018

Publication Date:
23 July 2018 (online)


Transition-metal-catalyzed nitrene transfer is a convenient method to introduce nitrogen into simple substrates through either alkene aziridination or C–H bond amination. Silver complexes have an unusual capability to accommodate a broad range of N-donor ligands and coordination geometries in catalysts competent for nitrene transfer. This behavior has resulted in the ability to achieve tunable chemoselectivity between aziridination and C–H bond amidation, as well as tunable site-selective functionalization between two different C–H bonds. In this paper, efforts to engage the diversity of silver and rhodium catalysts to accomplish selective and tunable aziridination of mixtures of alkenes are discussed. It was found that the selectivity of dinuclear Rh catalysts is dictated largely by steric effects, while the identity of the ligand on silver can be tuned to influence whether the steric or electronic features in the competing alkenes is the primary factor controlling which precursor is preferentially aziridinated.

Supporting Information

  • References

    • For selected references on Rh-catalyzed aziridination, see:
    • 1a Roizen JL. Harvey ME. Du Bois J. Acc. Chem. Res. 2012; 45: 911
    • 1b Collet F. Lescot C. Liang CG. Dauban P. Dalton Trans. 2010; 39: 10401
    • 1c Fiori KW. Espino CG. Brodsky BH. Du Bois J. Tetrahedron 2009; 65: 3042
    • 1d Hayes CJ. Beavis PW. Humphries LA. Chem. Commun. 2006; 4501
    • 1e Lebel H. Spitz C. Leogane O. Trudel C. Parmentier M. Org. Lett. 2011; 13: 5460
    • 1f Guthikonda K. Wehn PM. Caliando BJ. Du Bois J. Tetrahedron 2006; 62: 11331
    • 1g Guthikonda K. Du Bois J. J. Am. Chem. Soc. 2002; 124: 13672

      For selected references on Fe-catalyzed aziridination, see:
    • 2a Nakanishi M. Salit A. Bolm C. Adv. Synth. Catal. 2008; 350: 1835
    • 2b Renu V. Gao GY. Harden JD. Zhang XP. Org. Lett. 2004; 6: 1907

      For selected references on Cu-catalyzed aziridination, see:
    • 3a Han H. Park SB. Kim SK. Chang S. J. Org. Chem. 2008; 73: 2862
    • 3b Duran F. Leman L. Ghini A. Burton G. Dauban P. Dodd RH. Org. Lett. 2002; 4: 2481
    • 3c Lebel H. Lectard S. Parmentier M. Org. Lett. 2007; 9: 4797
    • 3d Liu RM. Herron SR. Fleming SA. J. Org. Chem. 2007; 72: 5587
    • 3e Brandt P. Södergren MJ. Andersson PG. Norrby PO. J. Am. Chem. Soc. 2000; 122: 8013
    • 3f Bagchi V. Paraskevopoulou P. Das P. Chi L. Wang Q. Choudhury A. Mathieson JS. Cronin L. Pardue DB. Cundari TR. Mitrikas G. Sanakis Y. Stavropoulos P. J. Am. Chem. Soc. 2014; 136: 11362

      For selected references on Ru-catalyzed aziridination, see:
    • 4a Zhang J.-L. Che C.-M. Org. Lett. 2002; 4: 1911
    • 4b Man WL. Lam WW. Yiu SM. Lau TC. Peng SM. J. Am. Chem. Soc. 2004; 126: 15336
    • 4c Kim C. Uchida T. Katsuki T. Chem. Commun. 2012; 48: 7188

      For selected references on Co-catalyzed aziridinations, see:
    • 5a Gao GY. Harden JD. Zhang XP. Org. Lett. 2005; 7: 3191
    • 5b Gao GY. Jones JE. Vyas R. Harden JD. Zhang XP. J. Org. Chem. 2006; 71: 6655
    • 5c Subbarayan V. Ruppel JV. Zhu S. Perman JA. Zhang XP. Chem. Commun. 2009; 4266
    • 5d Lyaskovskyy V. Suarez AI. O. Lu HJ. Jiang HL. Zhang XP. de Bruin B. J. Am. Chem. Soc. 2011; 133: 12264

      For selected references on Ag-catalyzed aziridinations, see:
    • 6a Cui Y. He C. J. Am. Chem. Soc. 2003; 125: 16202
    • 6b Alderson JM. Corbin JR. Schomaker JM. Acc. Chem. Res. 2017; 50: 2147
    • 6c Scamp RJ. Rigoli JW. Schomaker JM. Pure Appl. Chem. 2014; 86: 381
    • 6d Maestre L. Sameera WM. C. Dia-Requejo MM. Maseras F. Perez PJ. J. Am. Chem. Soc. 2013; 135: 1338

      For selected references, see:
    • 7a Hu XE. Tetrahedron 2004; 60: 2701
    • 7b Sweeney JB. Chem. Soc. Rev. 2002; 31: 247
    • 7c Lebel H. Parmentier M. Leogane O. Ross K. Spitz C. Tetrahedron 2012; 68: 3396
  • 8 Bakthavachalam A. Chuang H.-C. Yan T.-H. Tetrahedron 2014; 70: 5884
  • 9 Zelonka RA. Baird MC. J. Organomet. Chem. 1971; 33: 267
  • 10 Evans DA. Faul MM. Bilodeau MT. J. Am. Chem. Soc. 1994; 116: 2742
  • 11 Knight JG. Muldowney MP. Synlett 1995; 949
  • 12 Armstrong A. Pullin RD. Jenner CR. Scutt JN. J. Org. Chem. 2010; 75: 3499
  • 13 Rigoli JW. Weatherly CD. Alderson JM. Vo BT. Schomaker JM. J. Am. Chem. Soc. 2013; 135: 17238
  • 14 Rigoli JW. Weatherly CD. Vo VT. Neale S. Meis AR. Schomaker JM. Org. Lett. 2013; 15: 290
    • 15a Huang M. Yang T. Paretsky J. Berry JF. Schomaker JM. J. Am. Chem. Soc. 2017; 139: 17376
    • 15b Huang M. Corbin JR. Dolan NS. Fry CG. Vinokur A. Guzei IA. Schomaker JM. Inorg. Chem. 2017;  56: 6725
    • 15c Weatherly CD. Alderson JM. Berry JF. Hein JE. Schomaker JM. Organometallics 2017; 36: 1649
    • 15d Dolan NS. Scamp RJ. Yang T. Berry JF. Schomaker JM. J. Am. Chem. Soc. 2016;  138: 14658
    • 15e Scamp RJ. Jirak JG. Guzei IA. Schomaker JM. Org. Lett. 2016; 18: 3014
    • 15f Scamp R. Alderson JM. Phelps AM. Dolan NS. Schomaker JM. J. Am. Chem. Soc. 2014; 136: 16720
    • 15g Ju M. Weatherly CD. Guzei IA. Schomaker JM. Angew. Chem. Int. Ed. 2017; 56: 9944