Synlett 2018; 29(16): 2081-2086
DOI: 10.1055/s-0037-1610161
synpacts
© Georg Thieme Verlag Stuttgart · New York

A High-Throughput Approach to Discovery: Heck-Type Reactivity with Aldehydes

Jaya Kishore Vandavasi
,
This work was supported by the University of Ottawa, the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Canada Research Chairs program.
Further Information

Publication History

Received: 27 March 2018

Accepted after revision: 26 April 2018

Publication Date:
12 June 2018 (online)

Abstract

The classical Heck reaction is among the most powerful methods available for the construction of C–C bonds. Modification of this transformation to utilize diverse organohalide coupling partners has resulted in new reactions such as the silyl-Heck, aza-Heck, and boryl-Heck reactions. In contrast, modification of the olefin coupling partner is rare. For instance, use of the π-bond of an aldehyde instead of an alkene would provide ketones via a carbonyl-Heck process. This seemingly minor manipulation of the Heck reaction has proven surprisingly difficult to realize in practice. Through the use of high-throughput ­experimentation techniques, an efficient catalyst system for this transformation was identified, enabling the intermolecular coupling of ­organotriflates and aldehydes to synthesize diverse ketones.

 
  • References

    • 1a He J. Wasa M. Chan KS. L. Shao Q. Yu J.-Q. Chem. Rev. 2017; 117: 8754
    • 1b Lyons TW. Sanford MS. Chem. Rev. 2010; 110: 1147
    • 1c Kambe N. Iwasaki T. Terao J. Chem. Soc. Rev. 2011; 40: 4937
    • 1d Li B.-J. Yang S.-D. Shi Z.-J. Synlett 2008; 949
    • 2a Tellis JC. Primer DN. Molander GA. Science 2014; 345: 433
    • 2b Primer DN. Karakaya I. Tellis JC. Molander GA. J. Am. Chem. Soc. 2015; 137: 2195
    • 2c Vara BA. Jouffroy M. Molander GA. Chem. Sci. 2017; 8: 530
    • 2d Zuo Z. Ahneman T. Chu L. Terrett JA. Doyle AG. MacMillan DW. C. Science 2014; 345: 437
    • 2e Ye Y. Sanford MS. J. Am. Chem. Soc. 2012; 134: 9034
    • 2f Sahoo B. Hopkinson MN. Glorius F. J. Am. Chem. Soc. 2013; 135: 5505
    • 3a Ackerman LK. G. Lovell MM. Weix DJ. Nature 2015; 524: 454
    • 3b Bandar JS. Ascic E. Buchwald SL. J. Am. Chem. Soc. 2016; 138: 5821
    • 3c Chen F. Chen K. Zhang Y. He Y. Wang Y.-M. Zhu S. J. Am. Chem. Soc. 2017; 139: 13929
  • 4 Wang G.-Z. Shang R. Cheng W.-M. Fu Y. J. Am. Chem. Soc. 2017; 139: 18307
  • 5 Tong S. Limouni A. Wang Q. Wang M.-X. Zhu J. Angew. Chem. Int. Ed. 2017; 56: 14192
  • 6 McMahon CM. Renn MS. Alexanian EJ. Org. Lett. 2016; 18: 4148
  • 7 Vulovic B. Watson DA. Eur. J. Org. Chem. 2017; 4996
  • 9 Ishiyama T. Hartwig JF. J. Am. Chem. Soc. 2000; 122: 12043
    • 10a Ruan J. Saidi O. Iggo JA. Xiao J. J. Am. Chem. Soc. 2008; 130: 10510
    • 10b Colbon P. Ruan J. Purdie M. Xiao J. Org. Lett. 2010; 12: 3670
    • 11a Álvarez-Bercedo P. Flores-Gaspar A. Martin R. J. Am. Chem. Soc. 2010; 132: 466
    • 11b Flores-Gaspar A. Gutierrez-Bonet Á. Martin R. Org. Lett. 2012; 14: 5234
    • 12a Ramgren SD. Garg NK. Org. Lett. 2014; 16: 824
    • 12b Schmink JR. Krska SW. J. Am. Chem. Soc. 2011; 133: 19574
    • 12c Barré A. Ţînţaş M.-L. Alix F. Gembus V. Papamicaël C. Levacher V. J. Org. Chem. 2015; 80: 6537
    • 12d Satoh T. Itaya T. Miura M. Nomura M. Chem. Lett. 1996; 25: 823
    • 12e Ohno H. Aso A. Kadoh Y. Fujii N. Tanaka T. Angew. Chem. Int. Ed. 2007; 46: 6325
    • 12f Pucheault M. Darses S. Genet J.-P. J. Am. Chem. Soc. 2004; 126: 15356
    • 12g Toh QY. McNally A. Vera A. Erdmann N. Gaunt MJ. J. Am. Chem. Soc. 2013; 135: 3772
    • 12h Pan C. Jia X. Cheng J. Synthesis 2012; 44: 677
    • 12i Tang B.-X. Song R.-J. Wu C.-Y. Liu Y. Zhou M.-B. Wei W.-T. Deng G.-B. Yin D.-L. Li J.-H. J. Am. Chem. Soc. 2010; 132: 8900
    • 12j Gu L.-J. Jin C. Zhang H.-T. Chem. Eur. J. 2015; 21: 8741
    • 12k Mehta VP. Sharma AK. Modha SG. Sharma S. Meganathan T. Parmar VS. Van der Eycken E. J. Org. Chem. 2011; 76: 2920
    • 12l Miyashita A. Matsuda H. Iijima C. Higashino T. Chem. Pharm. Bull. 1990; 38: 1147
    • 12m Suzuki Y. Toyota T. Imada F. Sato M. Miyashita A. Chem. Commun. 2003; 1314
    • 12n Huang Y.-C. Majumdar KK. Cheng C.-H. J. Org. Chem. 2002; 67: 1682
    • 12o Suchand B. Satyanarayana G. J. Org. Chem. 2016; 81: 6409
    • 12p Wakaki T. Togo T. Yoshidome D. Kuninobu Y. Kanai M. ACS Catal. 2018; 8: 3123
    • 13a Hummel JR. Boerth JA. Ellman JA. Chem. Rev. 2017; 117: 9163
    • 13b Jia XF. Zhang SH. Wang WH. Luo F. Cheng J. Org. Lett. 2009; 11: 3120
    • 13c Crawford JJ. Henderson KW. Kerr WJ. Org. Lett. 2006; 8: 5073
  • 14 Krug C. Hartwig JF. J. Am. Chem. Soc. 2002; 124: 1674
    • 15a Horino Y. Aimono A. Abe H. Org. Lett. 2015; 17: 2824
    • 15b Hirano K. Yorimitsu H. Oshima K. Org. Lett. 2005; 7: 4689
    • 15c Sakurai F. Kondo K. Aoyama T. Tetrahedron Lett. 2009; 50: 6001
    • 15d Kabalka GW. Wu Z. Trotman SE. Gao X. Org. Lett. 2000; 2: 255
    • 15e Ueda M. Miyaura N. J. Org. Chem. 2000; 65: 4450
    • 15f Yuan F.-Q. Han F.-S. Org. Lett. 2012; 14: 1218
    • 15g Karthikeyan J. Jeganmohan M. Cheng C.-H. Chem. Eur. J. 2010; 16: 8989
    • 15h Liao Y.-X. Xing C.-H. He P. Hu Q.-S. Org. Lett. 2008; 10: 2509
    • 16a Muzart J. Tetrahedron 2003; 59: 5790
    • 16b Parmeggiani C. Cardona F. Green Chem. 2012; 14: 547
    • 16c Schultz MJ. Sigman MS. Tetrahedron 2006; 62: 8227
    • 17a Troshin K. Hartwig JF. Science 2017; 357: 175
    • 17b Robbins DW. Hartwig JF. Science 2011; 333: 1423
    • 17c Liu Z. Yamamichi H. Madrahimov ST. Hartwig JF. J. Am. Chem. Soc. 2011; 133: 2772
  • 18 McNally A. Prier CK. MacMillan DW. C. Science 2011; 334: 1114
  • 19 Shevlin M. ACS Med. Chem. Lett. 2017; 8: 601
  • 20 Friedfeld MR. Shevlin M. Hoyt JM. Krska SW. Tudge MT. Chirik PJ. Science 2013; 342: 1076
  • 21 Shevlin M. Friedfeld MR. Sheng H. Pierson NA. Hoyt JM. Campeau L.-C. Chirik PJ. J. Am. Chem. Soc. 2016; 138: 3562
  • 22 DiRocco DA. Dykstra K. Krska S. Vachal P. Conway DV. Tudge M. Angew. Chem. Int. Ed. 2014; 53: 4802
  • 23 Ben Halima T. Zhang W. Yalaoui I. Hong X. Yang Y.-F. Houk KN. Newman SG. J. Am. Chem. Soc. 2017; 139: 1311
  • 24 Ben Halima T. Vandavasi JK. Shkoor M. Newman SG. ACS Catal. 2017; 7: 2176
  • 25 Vandavasi JK. Hua X. Halima HB. Newman SG. Angew. Chem. Int. Ed. 2017; 56: 15441
    • 26a Gøgsig TM. Kleimark J. Nilsson Lill SO. Korsager S. Lindhardt AT. Norrby P.-O. Skrydstrup T. J. Am. Chem. Soc. 2012; 134: 443
    • 26b Matsubara R. Gutierrez AC. Jamison TF. J. Am. Chem. Soc. 2011; 133: 19020
    • 26c Tasker SZ. Gutierrez AC. Jamison TF. Angew. Chem. Int. Ed. 2014; 53: 1858
  • 27 Zhang X. MacMillan DW. C. J. Am. Chem. Soc. 2017; 139: 11353