Synthesis 2018; 50(23): 4617-4626
DOI: 10.1055/s-0037-1610252
paper
© Georg Thieme Verlag Stuttgart · New York

Efficient and Versatile Catalytic Systems for the N-Methylation of Primary Amines with Methanol Catalyzed by N-Heterocyclic Carbene Complexes of Iridium

Genki Toyooka
,
Akiko Tuji
,
Ken-ichi Fujita*
Graduate School of Human and Environmental Studies, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan   eMail: fujita.kenichi.6a@kyoto-u.ac.jp
› Institutsangaben
This work was supported by JSPS KAKENHI Grant Number JP16H01018 and JP18H04255 in Precisely Designed Catalysts with Customized Scaffolding and Nagase Science and Technology Foundation.
Weitere Informationen

Publikationsverlauf

Received: 25. Mai 2018

Accepted after revision: 25. Juli 2018

Publikationsdatum:
30. August 2018 (online)


Abstract

Efficient and versatile catalytic systems were developed for the N-methylation of both aliphatic and aromatic primary amines using methanol as the methylating agent. Iridium complexes bearing an N-heterocyclic carbene (NHC) ligand exhibited high catalytic performance for this type of transformation. For aliphatic amines, selective N,N-dimethylation was achieved at low temperatures (50–90 °C). For aromatic amines, selective N-monomethylation and selective N,N-dimethylation were accomplished by simply changing the reaction conditions (presence or absence of a base with an appropriate catalyst). These findings can be used to develop methods for synthesizing useful amine compounds having N-methyl or N,N-dimethyl moieties.

Supporting Information

 
  • References

    • 1a Barreiro EJ. Kümmerle AE. Fraga CA. M. Chem. Rev. 2011; 111: 5215
    • 1b Kanokmedhakul K. Kanokmedhakul S. Suwannatrai R. Soytong K. Prabpai S. Kongsaeree P. Tetrahedron 2011; 67: 5461
    • 1c Aoki S. Watanabe Y. Sanagawa M. Setiawan A. Kotoku N. Kobayashi M. J. Am. Chem. Soc. 2006; 128: 3148
    • 1d Fiala C. Gemzell-Danielsson K. Contraception 2006; 74: 66
    • 1e Roth FE. Chemotherapia 1961; 3: 120
    • 2a Chiappe C. Piccioli P. Pieraccini D. Green Chem. 2006; 8: 277
    • 2b Prashad M. Har D. Hu B. Kim H.-Y. Repic O. Blacklock TJ. Org. Lett. 2003; 5: 125
  • 3 March J. Advanced Organic Chemistry . Wiley; New York: 1985. 3rd ed. 798
    • 4a Liang R. Li S. Wang R. Lu L. Li F. Org. Lett. 2017; 19: 5790
    • 4b Liu Z. Yang Z. Yu X. Zhang H. Yu B. Zhao Y. Liu Z. Adv. Synth. Catal. 2017; 359: 4278
    • 4c Paul B. Shee S. Chakrabarti K. Kundu S. ChemSusChem 2017; 10: 2370
    • 4d Dang TT. Ramalingam B. Seayad AM. ACS Catal. 2015; 5: 4082
    • 4e Andrushko N. Andrushko V. Roose P. Moonen K. Börner A. ChemCatChem 2010; 2: 640
    • 4f Zotto AD. Baratta W. Sandri M. Verardo G. Rigo P. Eur. J. Inorg. Chem. 2004; 524
    • 4g Arcelli A. Khai B.-T. Porzi G. J. Organomet. Chem. 1982; 235: 93
    • 5a Choi G. Hong SH. Angew. Chem. Int. Ed. 2018; 57: 6166
    • 5b Chen J. Wu J. Tu T. ACS Sustainable Chem. Eng. 2017; 5: 11744
    • 5c Bruneau-Voisine A. Wang D. Dorcet V. Roisnel T. Darcel C. Sortais J.-B. J. Catal. 2017; 347: 57
    • 5d Oikawa K. Itoh S. Yano H. Kawasaki H. Obora Y. Chem. Commun. 2017; 53: 1080
    • 5e Neumann J. Elangovan S. Spannenberg A. Junge K. Beller M. Chem. Eur. J. 2017; 23: 5410
    • 5f Elangovan S. Neumann J. Sortais J.-B. Junge K. Darcel C. Beller M. Nat. Commun. 2016; 7: 12641
    • 5g Broomfield LM. Wu Y. Martin E. Shafir A. Adv. Synth. Catal. 2015; 357: 3538
    • 5h Campos J. Sharninghausen LS. Manas MG. Crabtree RH. Inorg. Chem. 2015; 54: 5079
    • 5i Li F. Xie J. Shan H. Sun C. Chen L. RSC. Adv. 2012; 2: 8645
    • 5j Bertoli M. Choualeb A. Lough AJ. Moore B. Spasyuk D. Gusev DG. Organometallics 2011; 30: 3479
    • 6a Du Y. Oishi S. Saito S. Chem. Eur. J. 2011; 17: 12262
    • 6b Zhao Y. Foo SW. Saito S. Angew. Chem. Int. Ed. 2011; 50: 3006
    • 6c Huh K.-T. Tsuji Y. Kobayashi M. Okuda F. Watanabe Y. Chem. Lett. 1988; 449
    • 7a Fujita K. Fujii T. Yamaguchi R. Org. Lett. 2004; 6: 3525
    • 7b Fujita K. Yamaguchi R. Synlett 2005; 560
    • 7c Fujita K. Enoki Y. Yamaguchi R. Tetrahedron 2008; 64: 1943
    • 7d Fujita K. Komatsubara A. Yamaguchi R. Tetrahedron 2009; 65: 3624
    • 7e Zhu M. Fujita K. Yamaguchi R. Org. Lett. 2010; 12: 1336
    • 7f Kawahara R. Fujita K. Yamaguchi R. J. Am. Chem. Soc. 2010; 132: 15108
  • 8 Fujita K. Furukawa S. Morishima N. Shimizu M. Yamaguchi R. ChemCatChem 2018; 10: 1993

    • There are many precedent reports for the N-alkylation of amines with alcohols (not using MeOH) catalyzed by NHC complexes of transition metals. For example:
    • 9a Xie X. Huynh HV. ACS Catal. 2015; 5: 4143
    • 9b Gnanamgari D. Sauer EL. O. Schley ND. Butler C. Incarvito CD. Crabtree RH. Organometallics 2009; 28: 321
    • 9c Liu S. Rebros M. Stephens G. Marr AC. Chem. Commun. 2009; 2308
  • 10 X-ray crystal structure analysis of 1c was performed. Details are described in the Supporting Information.

    • UV-promoted heterogeneous catalytic system for the N,N-dimethylation of primary amines has been also reported:
    • 11a Tsarev VN. Morioka Y. Caner J. Wang Q. Ushimaru R. Kudo A. Naka H. Saito S. Org. Lett. 2015; 17: 2530
    • 11b Zhang L. Zhang Y. Deng Y. Shi F. Catal. Sci. Technol. 2015; 5: 3226
    • 11c Zhang L. Zhang Y. Deng Y. Shi F. RSC Adv. 2015; 5: 14514
  • 12 Ball RG. Graham WA. G. Heinekey DM. Hoyano JK. McMaster AD. Mattson BM. Michel ST. Inorg. Chem. 1990; 29: 2023
    • 13a Gill DS. Maitlis PM. J. Organomet. Chem. 1975; 87: 359
    • 13b Kang JW. Moseley K. Maitlis PM. J. Am. Chem. Soc. 1969; 91: 5970
  • 14 Tanabe Y. Hanasaka F. Fujita K. Yamaguchi R. Organometallics 2007; 26: 4618
  • 15 Bhattacharyya S. J. Org. Chem. 1995; 60: 4928
  • 16 Krajnik P. Michos D. Crabtree RH. New J. Chem. 1993; 17: 805
  • 17 Bhattacharyya S. Molecules 2000; 5: M159
  • 18 Hamid MH. S. A. Allen CL. Lamb GW. Maxwell AC. Maytum HC. Watson AJ. A. Williams JM. J. J. Am. Chem. Soc. 2009; 131: 1766
  • 19 Bergstad K. Bäckvall J. J. Org. Chem. 1998; 63: 6650
  • 20 Yang L. Lin J. Kang L. Zhou W. Ma D.-Y. Adv. Synth. Catal. 2018; 360: 485
  • 21 Price GA. Flower KR. Pritchard RG. Brisdon AK. Quayle P. Dalton Trans. 2011; 40: 11696
  • 22 Jazwinski J. J. Mol. Struct. 2005; 750: 7
  • 23 Ollis WD. Rey M. Sutherland IO. J. Chem. Soc., Perkin Trans. 1 1983; 1009
  • 24 Alberico E. Braun W. Calmuschi-Cula B. Englert U. Salzer A. Totev D. Eur. J. Inorg. Chem. 2007; 4923
  • 25 Sun N. Wang S. Mo W. Hu B. Shen Z. Hu X. Tetrahedron 2010; 66: 7142
  • 26 Ikawa T. Barder TE. Biscoe MR. Buchwald SL. J. Am. Chem. Soc. 2007; 129: 13001
  • 27 Li F. Xie J. Shan H. Sun C. Chen L. RSC Adv. 2012; 2: 8645
  • 28 Fors BP. Watson DA. Biscoe MR. Buchwald SL. J. Am. Chem. Soc. 2008; 130: 13552
  • 29 Yang Z. Zhang H. Yu B. Zhao Y. Ma Z. Ji G. Han B. Liu Z. Chem. Commun. 2015; 51: 11576
  • 30 Stephanopoulos N. Carrico ZM. Francis MB. Angew. Chem. Int. Ed. 2009; 48: 9498
  • 31 Lu Y. Li X. Zheng X. Wang M. Xu Q. Zhu J. Li J. J. Med. Chem. 2017; 60: 5099
  • 32 Sato S. Nakamura H. Angew. Chem. Int. Ed. 2013; 52: 8681
  • 33 Lewis RS. Wisthoff MF. Grissmerson J. Chain WJ. Org. Lett. 2014; 16: 3832