Synlett 2018; 29(20): 2712-2716
DOI: 10.1055/s-0037-1610302
letter
© Georg Thieme Verlag Stuttgart · New York

Zinc-Catalyzed Synthesis of Dithioacetals through Double Hydrosulfenylation of Alkynes by Thiols

a  Department of Chemistry, Fukushima Medical University, Fukushima 960-1295, Japan   Email: taniguti@fmu.ac.jp
,
Kenji Kitayama
b  Innovation Park, Daicel Corporation, Shinzaike, Aboshi-ku, Himeji, Hyogo 671-1283, Japan   Email: kn_kitayama@jp.daicel.com
› Author Affiliations
This work was supported by the Daicel Corporation.
Further Information

Publication History

Received: 29 July 2018

Accepted after revision: 17 September 2018

Publication Date:
16 October 2018 (online)


Abstract

Zinc-catalyzed hydrosulfenylation of alkenes can be performed in various solvents, and the corresponding products are obtained regioselectively. Dihydrosulfenylation of alkynes with thiols can also be achieved by using a zinc catalyst, and the reaction is preferentially promoted over monohydrosulfenylation. The reaction can also give dithioacetals regioselectively in excellent yields.

Supporting Information

 
  • References and Notes

  • 2 Swiss KA. Liotta DC. In Comprehensive Organic Synthesis . Vol. 7, Chap. 3.6. Trost BM. Fleming I. Pergamon; Oxford: 1991: 515

    • For selected reports on hydrosulfenylation of alkenes, see:
    • 3a Fossey J. Lefort D. Sorba J. Free Radicals in Organic Chemistry . Wiley; Chichester: 1995
    • 3b Kanemasa S. Oderaotoshi Y. Wada E. J. Am. Chem. Soc. 1999; 121: 8675
    • 3c Munro-Leighton C. Blue ED. Gunnoe TB. J. Am. Chem. Soc. 2006; 128: 1446
    • 3d Brown R. Jones WE. Pinder AR. J. Chem. Soc. 1951; 3315
    • 3e Bordwell FG. Hewett WA. J. Am. Chem. Soc. 1957; 79: 3493
    • 3f Ichinose Y. Wakamatsu K. Nozaki K. Birbaum J.-L. Oshima K. Utimoto K. Chem. Lett. 1987; 1647
    • 3g Haché B. Gareau Y. Tetrahedron Lett. 1994; 35: 1837
    • 3h Belley M. Zamboni R. J. Org. Chem. 1989; 54: 1230
    • 3i Silveira CC. Mendes SR. Libero FM. Synlett 2010; 790
    • 3j Ranu BC. Mandal T. Synlett 2007; 925
    • 3k Caserio MC. Fisher CL. Kim JK. J. Org. Chem. 1985; 50: 4390
    • 3l Kondo T. Uenoyama S.-y. Fujita K.-i. Mitsudo T.-a. J. Am. Chem. Soc. 1999; 121: 482

      For selected recent papers on metal-catalyzed sulfenylations of alkynes, see:
    • 4a Cao C. Fraser LR. Love JA. J. Am. Chem. Soc. 2005; 127: 17614
    • 4b Ranjit S. Duan Z. Zhang P. Liu X. Org. Lett. 2010; 12: 4134
    • 4c Kondoh A. Takami K. Yorimitsu H. Oshima K. J. Org. Chem. 2005; 70: 6468
    • 4d Weiss CJ. Wobser SD. Marks TJ. Organometallics 2010; 29: 6308
    • 4e Shoai S. Bichler P. Kang B. Buckley H. Love JA. Organometallics 2007; 26: 5778

      For selected recent papers on metal-catalyzed sulfenylations of alkenes, see:
    • 5a Tyson EL. Ament MS. Yoon TP. J. Org. Chem. 2013; 78: 2046
    • 5b Tyson EL. Niemeyer ZL. Yoon TP. J. Org. Chem. 2014; 79: 1427
    • 5c Bhat VT. Duspara PA. Seo S. Bakar NS. B. A. Greaney MF. Chem. Commun. 2015; 51: 4383
    • 5d Tamai T. Fujiwara K. Higashimae S. Nomoto A. Ogawa A. Org. Lett. 2016; 18: 2114
    • 5e Tamai T. Ogawa A. J. Org. Chem. 2014; 79: 5028
    • 5f Taniguchi N. ChemistrySelect 2018; 3: 6209
  • 6 Greene TW. Wuts PG. M. Protective Groups in Organic Synthesis . Wiley; New York: 2002. 3rd ed

    • For anti-Markovnikov-type reactions, see:
    • 7a Kuroda H. Tomita I. Endo T. Synth. Commun. 1996; 26: 1539
    • 7b Wipf P. Graham TH. Org. Biomol. Chem. 2005; 3: 31
    • 7c Gaunt MJ. Sneddon HF. Hewitt PR. Orsini P. Hook DF. Ley SV. Org. Biomol. Chem. 2003; 1: 15
    • 7d Hut’ka M. Tsubogo T. Kobayashi S. Organometallics 2014; 33: 5626
    • 7e Nuyken O. Siebzehnrübl F. Phosphorus Sulfur Relat. Elem. 1988; 35: 47
    • 7f Bhadra S. Ranu BC. Can. J. Chem. 2009; 87: 1605

      For Markovnikov-type reactions, see:
    • 8a Mitamura T. Daitou M. Nomoto A. Ogawa A. Bull. Chem. Soc. Jpn. 2011; 84: 413
    • 8b Yadav JS. Reddy BV. S. Raju A. Ravindar K. Baishya G. Chem. Lett. 2007; 36: 1474
  • 9 For 1,2-disulfenylation, see: Jin Z. Xu B. Hammond GB. Eur. J. Org. Chem. 2010; 168
  • 10 1-Methyl-4-[(2-phenylethyl)thio]benzene (2aa); Typical Procedure (Table2, Entry 1) ZnCl2 (4.0 mg, 0.015 mmol) was added to a mixture of styrene (31.2 mg, 0.3 mmol) and 4-TolSH (37.3 mg, 0.33 mmol) in CH2Cl2 (0.3 mL), and the resulting mixture was stirred at r.t. for 18 h in air. The residue was dissolved in Et2O, and the solution was washed with H2O and sat. aq NaCl chloride then dried (MgSO4). Chromatography (silica gel, hexane) gave a colorless liquid; yield: 49.4 mg (72%) [see also ref. 3 (i)]. 1H NMR (270 MHz, CDCl3): δ = 7.27 (d, J = 7.9 Hz, 2 H), 7.12–7.05 (m, 7 H), 3.13–3.07 (m, 2 H), 2.88–2.83 (m, 2 H), 2.32 (s, 3 H). 13C{1H} NMR (67.5 MHz, CDCl3): δ = 137.2, 136.1, 135.9, 132.5, 130.0, 129.7, 129.1, 128.4, 35.9, 35.3, 21.0.
  • 11 1,1′-[(2-Phenylethane-1,1-diyl)bis(thio)]dibenzene (7ab);Typical Procedure (Table 4, Entry 1) ZnI2 (9.6 mg, 0.03 mmol) was added to a mixture of ethynylbenzene (30.6 mg, 0.3 mmol) and PhSH (69.4 mg, 0.33 mmol) in toluene (0.3 mL), and the resulting mixture was stirred at 100 °C for 18 h in air. The residue was dissolved in Et2O, and the solution was washed with H2O and sat. NaCl, then dried (MgSO4). Chromatography (silica gel, hexane) gave a colorless liquid; yield: 76.2 mg (79%). IR (neat): 3059, 3027, 1582, 1478, 1438 cm–1. 1H NMR (270 MHz, CDCl3): δ = 7.41–7.36 (m, 4 H), 7.31–7.16 (m, 11 H), 4.57 (t, J = 6.9 Hz, 1 H), 3.14 (d, J = 6.9 Hz, 2 H). 13C{1H} NMR (67.5 MHz, CDCl3): δ = 137.9, 134.3, 132.7, 129.4, 128.9, 128.3, 127.7, 126.8, 59.6, 42.2. Anal. Calcd for C20H18S2: C, 74.49; H, 5.63. Found: C, 74.78; H, 5.73.
  • 12 Mistra HP. J. Biol. Chem. 1974; 249: 2151
  • 13 Curran DP. Martin-Esker AA. Ko SB. Newcomb M. J. Org. Chem. 1993; 58: 4691
  • 14 Yamamoto Y. J. Org. Chem. 2007; 72: 7817