Synthesis 2018; 50(21): 4336-4342
DOI: 10.1055/s-0037-1610538
paper
© Georg Thieme Verlag Stuttgart · New York

Facile Synthesis of Halogen Decorated para-/meta-Hydroxy­benzoates by Iridium-Catalyzed Borylation and Oxidation

Tayyaba Shahzadi
Department of Chemistry & Chemical Engineering, Syed Babar Ali School of Science & Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan   Email: ghayoor.abbas@lums.edu.pk
,
Rahman S. Z. Saleem
Department of Chemistry & Chemical Engineering, Syed Babar Ali School of Science & Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan   Email: ghayoor.abbas@lums.edu.pk
,
Ghayoor A. Chotana*
Department of Chemistry & Chemical Engineering, Syed Babar Ali School of Science & Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan   Email: ghayoor.abbas@lums.edu.pk
› Author Affiliations
We thank Lahore University of Management Sciences for providing generous financial support for this research through start-up grant and faculty initiative fund to G.A.C. We also thank Higher Education Commission (HEC) of Pakistan for financial support through grant number NRPU-4426. T.S. is thankful to Lahore University of Management Sciences for a Ph.D. fellowship.
Further Information

Publication History

Received: 10 May 2018

Accepted after revision: 04 July 2018

Publication Date:
09 August 2018 (online)


Abstract

Hydroxybenzoates are an important class of phenols that are widely used as preservatives and antiseptics in the food and pharmaceutical industries. In this report, a facile preparation of 2,6- and 2,3-disubstituted 4/5-hydroxybenzoates by iridium-catalyzed borylation of respective disubstituted benzoate esters followed by oxidation is described. This synthetic route allows for the incorporation of halogens in the final hydroxybenzoates with substitution patterns not readily accessible by the traditional routes of aromatic functionalization.

Supporting Information

 
  • References

  • 1 Aalto TR. Firman MC. Rigler NE. J. Am. Pharm. Assoc. 1953; 42: 449
  • 2 Tyman JH. P. Synthetic and Natural Phenols . Elsevier; New York: 1996
  • 3 The Chemistry of Phenols . Rappoport Z. Wiley; New York: 2003
  • 4 Anderson FA. Int. J. Toxicol. 2008; 27: 1
  • 5 Soni MG. Burdock GA. Taylor SL. Greenberg NA. Food Chem. Toxicol. 2001; 39: 513
  • 6 Soni MG. Taylor SL. Greenberg NA. Burdock GA. Food Chem. Toxicol. 2002; 40: 1335
  • 7 Błędzka D. Gromadzińska J. Wąsowicz W. Environ. Int. 2014; 67: 27
  • 8 Ramaswamy BR. Kim J.-W. Isobe T. Chang K.-H. Amano A. Miller TW. Siringan FP. Tanabe S. J. Hazard. Mater. 2011; 192: 1739
  • 9 Bergquist BL. Jefferson KG. Kintz HN. Barber AE. Yeagley AA. ACS Med. Chem. Lett. 2018; 9: 51
  • 10 Goretti M. Turchetti B. Buratta M. Branda E. Corazzi L. Vaughan-Martini A. Buzzini P. Int. J. Food Microbiol. 2009; 131: 178
  • 11 Yadav GD. Rahuman MS. M. M. Org. Process Res. Dev. 2002; 6: 706
  • 12 Lindsey AS. Jeskey H. Chem. Rev. 1957; 57: 583
  • 13 Liao X. Raghavan GS. V. Yaylayan VA. Tetrahedron Lett. 2002; 43: 45
  • 14 Hazarika MK. Parajuli R. Phukan P. Indian J. Chem. Technol. 2007; 14: 104
  • 15 Villa C. Baldassari S. Gambaro R. Mariani E. Loupy A. Int. J. Cosmetic Sci. 2005; 27: 11
  • 16 Vosmann K. Wiege B. Weitkamp P. Weber N. Appl. Microbiol. Biotechnol. 2008; 80: 29
  • 17 Contreras-Celedón CA. Chacón-García L. Lira-Corral NJ. J. Chem. 2014; 5
  • 18 Webb KS. Levy D. Tetrahedron Lett. 1995; 36: 5117
  • 19 Wagh RB. Nagarkar JM. Tetrahedron Lett. 2017; 58: 4572
  • 20 Kianmehr E. Yahyaee M. Tabatabai K. Tetrahedron Lett. 2007; 48: 2713
  • 21 Zhong Y. Yuan L. Huang Z. Gu W. Shao Y. Han W. RSC Adv. 2014; 4: 33164
  • 22 Ding W. Chen J.-R. Zou Y.-Q. Duan S.-W. Lu L.-Q. Xiao W.-J. Org. Chem. Front. 2014; 1: 151
  • 23 Gualandi A. Savoini A. Saporetti R. Franchi P. Lucarini M. Cozzi PG. Org. Chem. Front. 2018; 5: 1573
  • 24 Xie H.-Y. Han L.-S. Huang S. Lei X. Cheng Y. Zhao W. Sun H. Wen X. Xu Q.-L. J. Org. Chem. 2017; 82: 5236
  • 25 Zou YQ. Chen JR. Liu XP. Lu LQ. Davis RL. Jørgensen KA. Xiao WJ. Angew. Chem. Int. Ed. 2012; 51: 784
  • 26 Luo J. Hu B. Sam A. Liu TL. Org. Lett. 2018; 20: 361
  • 27 Fier PS. Maloney KM. Org. Lett. 2016; 18: 2244
  • 28 Davidson JP. Sarma K. Fishlock D. Welch MH. Sukhtankar S. Lee GM. Martin M. Cooper GF. Org. Process Res. Dev. 2010; 14: 477
  • 29 Alonso DA. Nájera C. Pastor IM. Yus M. Chem. Eur. J. 2010; 16: 5274
  • 30 Liu Y. Liu S. Xiao Y. Beilstein J. Org. Chem. 2017; 13: 589
  • 31 Bracegirdle S. Anderson EA. Chem. Commun. 2010; 46: 3454
  • 32 Li W. Gao G. Gao Y. Yang C. Xia W. Chem. Commun. 2017; 53: 5291
  • 33 Rayment EJ. Summerhill N. Anderson EA. J. Org. Chem. 2012; 77: 7052
  • 34 Maleczka RE. Jr. Shi F. Holmes D. Smith MR. III. J. Am. Chem. Soc. 2003; 125: 7792
  • 35 Marshall LJ. Cable KM. Botting NP. Tetrahedron Lett. 2010; 51: 2690
  • 36 Marshall LJ. Cable KM. Botting NP. J. Labelled Compd. Radiopharm. 2010; 53: 601
  • 37 Norberg AM. Smith MR. III. Maleczka RE. Jr. Synthesis 2011; 857
  • 38 Jayasundara CR. K. Unold JM. Oppenheimer J. Smith MR. Maleczka RE. Org. Lett. 2014; 16: 6072
  • 39 Hodgson HH. Wignall JS. J. Chem. Soc. 1926; 129: 2077