Synlett 2018; 29(18): 2381-2384
DOI: 10.1055/s-0037-1610632
letter
© Georg Thieme Verlag Stuttgart · New York

Two Propanediurea-based Cucurbituril Analogues: Bis-ns-TD[8] and NH-ns-TD[4]

Chunhua Dai
,
Yenan Shen
,
Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. of China   Email: qcwang@ecust.edu.cn
› Author Affiliations
This work was financially supported by the NSFC/China (21572063 and 21372076), the Science Fund for Creative Research Groups (21421004), the Program of Introducing Talents of Discipline to Universities (B16017), and the Fundamental Research Funds for the Central Universities (222201717003).
Further Information

Publication History

Received: 13 June 2018

Accepted after revision: 09 August 2018

Publication Date:
31 August 2018 (online)


Abstract

Two new cucurbituril members, one containing two equivalent cavities and the other having an active secondary amine group, were synthesized by condensation of propanediurea (2,4,6,8-tetraazabicyclo[3.3.1]nonane-3,7-dione) with formaldehyde. These two macrocycles exhibit excellent thermal stability, and their structures were confirmed by single-crystal X-ray diffraction, 1H NMR spectroscopy, and high-resolution mass spectrometry.

Supporting Information

Primary Data

 
  • References and Notes

    • 1a Geras’ko OA. Samsonenko DG. Fedin VP. Russ. Chem. Rev. 2002; 71: 741
    • 1b Lee JW. Samal S. Selvapalam N. Kim H.-J. Kim K. Acc. Chem. Res. 2003; 36: 621
    • 1c Lagona J. Mukhopadhyay P. Chakrabarti S. Isaacs L. Angew. Chem. Int. Ed. 2005; 44: 4844
    • 1d Reany O. Li A. Yefet M. Gilson MK. Keinan E. J. Am. Chem. Soc. 2017; 139: 8138
    • 2a Day AI. Blanch RJ. Arnold AP. Lorenzo S. Lewis GR. Dance I. Angew. Chem. Int. Ed. 2002; 41: 275
    • 2b Khashab NM. Trabolsi A. Lau YA. Ambrogio MW. Friedman DC. Khatib HA. Zink JI. Stoddart JF. Eur. J. Org. Chem. 2009; 1669
    • 2c Dong S. Zheng B. Wang F. Huang F. Acc. Chem. Res. 2014; 47: 1982
    • 2d Liu Y. Yang H. Wang Z. Zhang X. Chem. Asian J. 2013; 8: 1626
    • 2e Hu J. Liu S. Acc. Chem. Res. 2014; 47: 2084
    • 2f Tang X. Huang Z. Chen H. Kang Y. Xu J.-F. Zhang X. Angew. Chem. Int. Ed. 2018; 57: 1
    • 2g Gupta M. Parvathi K. Mula S. Maity DK. Ray AK. Photochem. Photobiol. Sci. 2017; 16: 499
    • 3a Wu F. Wu L.-H. Xiao X. Zhang Y.-Q. Xue S.-F. Tao Z. Day AI. J. Org. Chem. 2012; 77: 606
    • 3b Gilberg L. Khan SA. Enderesova M. Sindelar V. Org. Lett. 2014; 16: 2446
    • 3c Zhang H. Wang Q. Ma X. Tian H. Org. Lett. 2009; 11: 3234
    • 3d Wu S. Ma X. Wang Q. Tian H. Dalton Trans. 2011; 40: 12033
    • 3e Qian Z. Huang X. Wang Q. Dyes Pigm. 2017; 145: 365
    • 3f Zhang Q. Qu D.-H. Wang Q. Tian H. Angew. Chem. Int. Ed. 2015; 54: 15789
    • 3g Zhang Q. Wang W.-Z. Yu J.-J. Qu D.-H. Tian H. Adv. Mater. (Weinheim, Ger.) 2017; 29: 1604948
  • 4 Freeman WA. Mock WL. Shih NY. J. Am. Chem. Soc. 1981; 103: 7367
    • 5a Kim J. Jung I.-S. Kim S.-Y. Lee E. Kang J.-K. Sakamoto S. Yamaguchi K. Kim K. J. Am. Chem. Soc. 2000; 122: 540
    • 5b Liu S. Zavalij PY. Isaacs L. J. Am. Chem. Soc. 2005; 127: 16798
    • 5c Cheng X.-J. Liang L.-L. Chen K. Ji N.-N. Xiao X. Zhang J.-X. Zhang Y.-Q. Xue S.-F. Zhu Q.-J. Ni X.-L. Tao Z. Angew. Chem. Int. Ed. 2013; 52: 7252
    • 6a Flinn A. Hough GC. Stoddardt JF. Williams DJ. Angew. Chem. Int. Ed. 1992; 31: 1475
    • 6b Zhao J. Kim H.-J. Oh J. Kim S.-Y. Lee JW. Sakamoto S. Yamaguchi K. Kim K. Angew. Chem. Int. Ed. 2001; 40: 4233
    • 6c Jon SY. Selvapalam N. Oh DH. Kang J.-K. Kim S.-Y. Jeon YJ. Lee JW. Kim K. J. Am. Chem. Soc. 2003; 125: 10186
    • 6d Sasmal S. Sinha MK. Keinan E. Org. Lett. 2004; 6: 1225
    • 6e Zhao N. Lloyd GO. Scherman OA. Chem. Commun. 2012; 48: 3070
    • 6f Lucas D. Minami T. Iannuzzi G. Cao L. Wittenberg JB. Anzenbacher P. Isaacs L. J. Am. Chem. Soc. 2011; 133: 17966
    • 7a Lagona J. Fettinger JC. Isaacs L. Org. Lett. 2003; 5: 3745
    • 7b Lin J. Zhang Y. Zhang J. Xue S. Zhu Q. Tao Z. J. Mol. Struct. 2008; 875: 442
    • 7c Lu L.-B. Yu D.-H. Zhang Y.-Q. Zhu Q.-J. Xue S.-F. Tao Z. J. Mol. Struct. 2008; 885: 70
    • 8a Miyahara Y. Goto K. Oka M. Inazu T. Angew. Chem. Int. Ed. 2004; 43: 5019
    • 8b Svec J. Necas M. Sindelar V. Angew. Chem. Int. Ed. 2010; 49: 2378
    • 8c Liu J. Jiang X. Huang X. Zou L. Wang Q. Colloid Polym. Sci. 2016; 294: 1243
    • 8d Wu Y. Xu L. Shen Y. Wang Y. Zou L. Wang Q. Liu J. Tian H. Chem. Commun. 2017; 53: 4070
  • 9 Huang W.-H. Liu S. Zavalij PY. Isaacs L. J. Am. Chem. Soc. 2006; 128: 14744
  • 10 Huang W.-H. Zavalij PY. Isaacs L. Angew. Chem. Int. Ed. 2007; 46: 7425
  • 11 Wittenberg JB. Costales MG. Zavalij PY. Isaacs L. Chem. Commun. 2011; 47: 9420
  • 12 Shen Y. Zou L. Wang Q. New J. Chem. 2017; 41: 7857
  • 13 Bis-ns-TD[8]·4NaCl TD (10 g, 64.1mmol), paraformaldehyde (5.00 g, 166.6 mmol), CaCl2 (1 g, 9.0 mmol) and 9 M HCl (20 mL) were mixed and the solution was heated at 100 °C for 3.5 h. The resulting mixture was cooled to r.t. and the resulting precipitate was collected by filtration and washed with H2O (150 mL). The residual solid precipitate was collected and crystallized from 25% aq NaCl then dried to give a white solid; yield: 1.9 g (13.5%); mp >350 °C. 1H NMR (400 MHz, D2O): δ = 6.54 (d, J = 14.8 Hz, 2 H), 6.36 (dd, J = 26.3, 14.7 Hz, 12 H), 5.47 (s, 4 H), 5.20 (s, 20 H), 4.06–4.18 (m, 14 H), 2.30 (s, 8 H), 2.23 (d, J = 12.7 Hz, 4 H), 2.13 (d, J = 13.1 Hz, 4 H). 13C NMR (100 MHz, D2O, 298 K): δ = 153.46, 153.01, 152.91, 151.96, 77.67, 69.65, 69.60, 69.51, 69.42, 69.39, 66.45, 61.29, 60.87, 27.92, 27.60. MALDI-TOF MS: m/z [M + Na]+ calcd for C58H68N32NaO18: 1523.5281; found: 1523.4833. Anal. Calcd for C58H68N32O18·4NaCl (1732.3734): C, 40.18; H, 3.956; N, 25.87. Found: C, 40.12; H, 3.951; N, 25.81.
  • 14 CCDC 1811515 and 1811514 contain the supplementary crystallographic data for bis-ns-TD[8]·4NaCl and NH-ns-TD[4]·2CaCl2 , respectively. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 15 NH-ns-TD[4]·2CaCl2 The reaction filtrate from the preparation of Bis-ns-TD[8]·4NaCl (ref. 14) was concentrated to a quarter of its volume, and a yellow solid was obtained after adding acetone (5 mL) and H2O (10 mL). The solid was crystallized from H2O affording a pure white solid yield: 1.6 g; mp >350 °C. 1H NMR (400 MHz, D2O): δ = 6.50 (d, J = 15.1 Hz, 1 H), 6.29 (d, J = 15.1 Hz, 1 H), 6.19 (d, J = 15.0 Hz, 4 H), 5.44–5.16 (m, 6 H), 4.85 (s, 2 H), 4.42 (s, 2 H), 4.32–4.10 (m, 6 H), 3.85 (d, J = 10.6 Hz, 2 H), 2.31 (d, J = 26.3 Hz, 8 H). 13C NMR (100 MHz, D2O, 298K): δ = 155.71, 154.70, 154.22, 153.22, 69.75, 69.35, 68.91, 62.80, 61.74, 61.22, 60.77, 59.28, 26.89, 25.95. MALDI-TOF MS: m/z [M + Na]+ calcd for C28H35N17NaO8: 760.2747; found: 760.2252; [M + K]+ calcd for C28H35KN17O8: 776.2486; found: 776.2520. Anal. Calcd for C28H35N17O8·2CaCl2 (957.0860): C, 35.11; H, 3.685; N, 24.87. Found: C, 34.97; H, 3.659; N, 24.82.
  • 16 Vinciguerra B. Cao L. Cannon JR. Zavalij PY. Fenselau C. Isaacs L. J. Am. Chem. Soc. 2014; 134: 131
    • 17a Jansen RJ. Dissertation. Radboud University Nijmegen; The Netherlands: 2002
    • 17b Ustrnul L. Kulhanek P. Lizal T. Sindelar V. Org. Lett. 2015; 17: 1022
  • 18 Day AI. Blanch RJ. Coe A. Arnold AP. J. Inclusion Phenom. Macrocyclic Chem. 2002; 43: 247