Synlett 2018; 29(16): 2191-2194
DOI: 10.1055/s-0037-1610653
letter
© Georg Thieme Verlag Stuttgart · New York

Pd-Catalyzed Oxidation of Aldimines to Amides

Shanshan Gao
School of Materials Science and Chemical Engineering, Ningbo University, 315211 Ningbo, P. R. of China   Email: luojunfei@nbu.edu.cn
,
Yaorui Ma
School of Materials Science and Chemical Engineering, Ningbo University, 315211 Ningbo, P. R. of China   Email: luojunfei@nbu.edu.cn
,
Weidong Chen
School of Materials Science and Chemical Engineering, Ningbo University, 315211 Ningbo, P. R. of China   Email: luojunfei@nbu.edu.cn
,
Junfei Luo*
School of Materials Science and Chemical Engineering, Ningbo University, 315211 Ningbo, P. R. of China   Email: luojunfei@nbu.edu.cn
› Author Affiliations
This research is sponsored by research funds of Ningbo University (No. ZX2016000748) and the K. C. Wong Magna Fund in Ningbo ­University.
Further Information

Publication History

Received: 19 June 2018

Accepted after revision: 17 July 2018

Publication Date:
21 August 2018 (online)


Abstract

Methods for the synthesis of amides via the direct oxidation of imines are rarely reported. Here we report an efficient method for Pd-catalyzed oxidation of imines to amide derivatives by the use of cheap aqueous tert-butyl hydroperoxide as an oxidant through a Wacker-type reaction. This method is practically convenient and displays high functional group tolerance, allowing a variety of imines to transform into the corresponding amide derivatives in moderate to good yields.

Supporting Information

 
  • References and Notes

  • 1 Greenberg A. The Amide Linkage: Selected Structural Aspects in Chemistry, Biochemistry, and Materials Science. Wiley-Interscience; New York: 2000
    • 2a Humphrey JM. Chamberlin AR. Chem. Rev. 1997; 97: 2243
    • 2b Wipf P. In Handbook of Reagents for Organic Synthesis. Wiley and Sons; New York: 2005
    • 3a Teichert A. Jantos K. Harms K. Studer A. Org. Lett. 2004; 6: 3477
    • 3b Shendage DM. Froehlich R. Haufe G. Org. Lett. 2004; 6: 3675
    • 3c Montalbetti CA. G. N. Falque V. Tetrahedron 2005; 61: 10827
    • 3d Black DA. Arndtsen BA. Org. Lett. 2006; 8: 1991
    • 3e Katritzky AR. Cai C. Singh SK. J. Org. Chem. 2006; 71: 3375
    • 4a Lanigan RM. Sheppard TD. Eur. J. Org. Chem. 2013; 33: 7453
    • 4b Lundberg H. Tinnis F. Selander N. Adolfsson H. Chem. Soc. Rev. 2014; 42: 2714
    • 5a Schmidt RF. Ber. Dtsch. Chem. Ges. 1924; 57: 704
    • 5b Yao L. Aube J. J. Am. Chem. Soc. 2007; 129: 2766
    • 6a Ramalingan C. Park Y.-T. J. Org. Chem. 2007; 72: 4536
    • 6b Augustine JK. Kumar R. Bombrun A. Mandal AB. Tetrahedron Lett. 2011; 52: 1074
    • 7a Martinelli JR. Clark TP. Watson DA. Munday RH. Buchwald SL. Angew. Chem. Int. Ed. 2007; 46: 8460
    • 7b Chang JW. W. Chan PW. H. Angew. Chem. Int. Ed. 2008; 47: 1138
    • 7c Kolakowski RV. Shangguan N. Sauers RR. Williams LJ. J. Am. Chem. Soc. 2006; 128: 5695
    • 7d Lin Y.-S. Alper H. Angew. Chem. Int. Ed. 2001; 40: 779
    • 7e Uozumi Y. Arii T. Watanabe T. J. Org. Chem. 2001; 66: 5272
    • 7f Namayakkara P. Alper H. Chem. Commun. 2003; 2384
    • 7g Knapton D. Meyer TY. Org. Lett. 2004; 6: 687
    • 7h Uenoyama Y. Fukuyama T. Nobuta O. Matsubara H. Ryu I. Angew. Chem. Int. Ed. 2005; 44: 1075
    • 7i Gunanathan C. Ben-David Y. Milstein D. Science 2007; 317: 790
    • 7j Nordstrom LU. Vogt H. Madsen R. J. Am. Chem. Soc. 2008; 130: 17672
    • 7k Zhang Y. Chen C. Ghosh SC. Li Y. Hong SH. Organometallics 2010; 29: 1374
    • 7l Muthaiah S. Ghosh SC. Jee J.-E. Chen C. Zhang J. Hong SH. J. Org. Chem. 2010; 75: 3002
    • 7m Kim K. Kang B. Hong SH. Tetrahedron 2015; 71: 4565
    • 7n Islam SM. Ghosh K. Roy AS. Molla RA. Appl. Organometal. Chem. 2014; 28: 900
    • 8a Ding Y. Zhang X. Zhang D. Chen Y. Wu Z. Wang P. Xue W. Song B. Yang S. Tetrahedron Lett. 2015; 56: 831
    • 8b Whittaker AM. Dong VM. Angew. Chem. Int. Ed. 2015; 54: 1312
    • 8c Mamaghani M. Shirini F. Sheykhan M. Mohsenimehr M. RSC Adv. 2015; 5: 44524
    • 8d Lu S.-Y. Badsara SS. Wu Y.-C. Reddy DM. Lee C.-F. Tetrahedron Lett. 2016; 57: 633
    • 8e Wu Z. Hull KL. Chem. Sci. 2016; 7: 969
    • 8f Ekoue-Kovi K. Wolf C. Org. Lett. 2007; 9: 3429
  • 9 Zultanski SL. Zhao J. Stahl SS. J. Am. Chem. Soc. 2016; 138: 6416
  • 10 An G.-i. Kim M. Kim JY. Rhee H. Tetrahedron Lett. 2003; 44: 2183
  • 11 Seo H.-A. Cho Y.-H. Lee Y.-S. Cheon C.-H. J. Org. Chem. 2015; 80: 11993
  • 12 Larsen J. Jorgensen KA. Christensen D. J. Chem. Soc., Perkin Trans. 1 1991; 1187
  • 13 Mohamed MA. Yamada K.-i. Tomioka K. Tetrahedron Lett. 2009; 50: 3436
    • 14a Smidt J. Hafner W. Jira R. Sieber R. Sedlmeier S. Sabel A. Angew. Chem., Int. Ed. Engl. 1962; 1: 80
    • 14b Clement WH. Selwitz CM. J. Org. Chem. 1964; 29: 241
    • 14c Tsuji J. Synthesis 1984; 369
    • 14d Tsuji J. Trost BM. Fleming I. Comprehensive Organic Synthesis . Vol. 7. Pergamon Press; New York: 1991: 449
  • 15 Zhang L. Wang W. Wang A. Cui Y. Yang X. Huang Y. Liu X. Liu W. Son J. Oji H. Zhang T. Green Chem. 2013; 15: 2680
  • 16 Typical Procedure for the Preparation of N-Phenylbenzamide (2a) Pd(OAc)2 (0.01 mmol), N,1-diphenylmethanimine (1a, 0.2 mmol), TBHP (70 % solution in H2O, 6.0 equiv, 1.2 mmol), and DCE (1.5 mL) were added to a vial. The reaction mixture was stirred under 120 °C for 5 h. After that time, the reaction mixture was quenched with saturated Na2SO3 solution (consumption of residual TBHP) and extracted with EtOAc. The organic layer was separated and dried with Na2SO4. Removal of solvent followed by flash column chromatographic purification (EtOAc/PE) afforded N-phenylbenzamide (2a) as a white solid (33.5 mg, yield 85%). 1H NMR (400 MHz, CDCl3): δ = 7.94 (br s, 1 H), 7.86 (d, J = 7.3 Hz, 2 H), 7.65 (d, J = 7.9 Hz, 2 H), 7.54 (t, J = 7.3 Hz, 1 H), 7.47 (t, J = 7.4 Hz, 2 H), 7.36 (t, J = 7.8 Hz, 2 H), 7.15 (t, J = 7.4 Hz, 1 H) ppm. 13C NMR (101 MHz, CDCl3): δ = 165.7, 137.9, 135.0, 131.9, 129.1, 128.8, 127.0, 124.6, 120.2 ppm.