Synlett 2018; 29(20): 2655-2659
DOI: 10.1055/s-0037-1610671
letter
© Georg Thieme Verlag Stuttgart · New York

Thiolate-Protected Au25(SC2H4Ph)18 Nanoclusters as a Catalyst for Intermolecular Hydroamination of Terminal Alkynes

Tatsuki Nagata
,
Yurina Adachi
,
Yasushi Obora*
Department of Chemistry and Material Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita, Osaka 564-8680, Japan   Email: obora@kansai-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 12 September 2018

Accepted after revision: 15 October 2018

Publication Date:
16 November 2018 (online)


Abstract

Au25(SC2H4Ph)18 nanoclusters have high catalytic activity for hydroamination of terminal alkynes. This reaction proceeds under O2 or air. The presence of molecular oxygen has a profound effect on the Au25(SC2H4Ph)18 reactivity. The catalysts can be separated from the mixture after the reaction and reused.

Supporting Information

 
  • Reference and Notes

    • 1a Córdova A. Acc. Chem. Res. 2004; 37: 102
    • 1b Nájera C, Sansano JM. Chem. Rev. 2007; 107: 4584
    • 1c Jorgensen KA. Angew. Chem. Int. Ed. 2000; 39: 3558
    • 1d Layer RW. Chem. Rev. 1963; 63: 489
    • 1e Erkkilä A, Majander I, Pihko PM. Chem. Rev. 2007; 107: 5416
    • 2a Gooßen LJ, Huang L, Arndt M, Gooßen K, Heydt H. Chem. Rev. 2015; 115: 2596
    • 2b Müller TE, Hultzsch KC, Yus M, Foubelo F, Tada M. Chem. Rev. 2008; 108: 3795
    • 2c Severin R, Doye S. Chem. Soc. Rev. 2007; 36: 1407
    • 2d Patil RD, Adimurthy S. Asian J. Org. Chem. 2013; 2: 726
    • 3a Chen Q, Lv L, Yu M, Shi Y, Li Y, Pang G, Cao C. RSC Adv. 2013; 3: 18359
    • 3b Tokunaga M, Eckert M, Wakatsuki Y. Angew. Chem. Int. Ed. 1999; 38: 3222
    • 3c Iali W, La Paglia F, Le Goff XF, Sredojević D, Pfeffer M, Djukic JP. Chem. Commun. 2012; 48: 10310
    • 3d Hartung CG, Tillack A, Trauthwein H, Beller M. J. Org. Chem. 2001; 66: 6339
    • 3e Brunet JJ, Chu NC, Diallo O, Vincendeau S. J. Mol. Catal. A: Chem. 2005; 240: 245
    • 4a Gorin DJ, Toste FD. Nature 2007; 446: 395
    • 4b Corma A, Leyva-Pérez A, Sabater MJ. Chem. Rev. 2011; 111: 1657
    • 4c Jia M, Bandini M. ACS Catal. 2015; 5: 1638
    • 4d Ranieri B, Escofet I, Echavarren AM. Org. Biomol. Chem. 2015; 13: 7103
    • 4e Joost M, Amgoune A, Bourissou D. Angew. Chem. Int. Ed. 2015; 54: 15022
    • 5a Mizushima E, Hayashi T, Tanaka M. Org. Lett. 2003; 5: 3349
    • 5b Brouwer C, He C. Angew. Chem. Int. Ed. 2006; 45: 1744
    • 6a Mathew A, Pradeep T. Part. Part. Syst. Charact. 2014; 31: 1017
    • 6b Chakraborty I, Pradeep T. Chem. Rev. 2017; 117: 8208
    • 7a Haruta M, Kobayashi T, Sano H, Yamada N. Chem. Lett. 1987; 16: 405
    • 7b Taketoshi A, Haruta M. Chem. Lett. 2014; 43: 380
    • 8a Tsukuda T. Bull. Chem. Soc. Jpn. 2012; 85: 151
    • 8b Fang J, Zhang B, Yao Q, Yang Y, Xie J, Yan N. Coord. Chem. Rev. 2016; 322: 1
    • 8c Fang J, Zhang B, Yao Q, Yang Y, Xie J, Yan N. Coord. Chem. Rev. 2016; 322: 1
    • 9a Li G, Jin R. Acc. Chem. Res. 2013; 46: 1749
    • 9b Nie X, Qian H, Ge Q, Xu H, Jin R. ACS Nano 2012; 6: 6014
    • 9c Li G, Jiang DE, Liu C, Yu C, Jin R. J. Catal. 2013; 306: 177
    • 9d Li G, Jin R. J. Am. Chem. Soc. 2014; 136: 11347
    • 9e Liu Y, Tsunoyama H, Akita T, Tsukuda T. Chem. Commun. 2010; 46: 550
    • 9f Xie S, Tsunoyama H, Kurashige W, Negishi Y, Tsukuda T. ACS Catal. 2012; 2: 1519
    • 10a Kitahara H, Sakurai H. Chem. Lett. 2010; 39: 46
    • 10b Bobuatong K, Sakurai H, Ehara M. ChemCatChem 2017; 9: 4490
    • 11a Corma A, Concepción P, Domínguez I, Forné V, Sabater MJ. J. Catal. 2007; 251: 39
    • 11b Lee LC, Zhao Y. ACS Catal. 2014; 4: 688
    • 11c Liang S, Hammond L, Xu B, Hammond GB. Adv. Synth. Catal. 2016; 358: 3313
    • 12a Li Q, Das A, Wang S, Chen Y, Jin R. Chem. Commun. 2016; 52: 14298
    • 12b Adachi Y, Kawasaki H, Nagata T, Obora Y. Chem. Lett. 2016; 45: 1457
    • 13a Zhu M, Eckenhoff WT, Pintauer T, Jin R. J. Phys. Chem. 2008; 112: 14221
    • 13b Zhu M, Aikens CM, Hendrich MP, Gupta R, Qian H, Schatz GC, Jin R. J. Am. Chem. Soc. 2009; 131: 2490
    • 14a Okumura M, Kitagawa Y, Haruta M, Yamaguchi K. Appl. Catal., A 2005; 291: 34
    • 14b Roldán A, Ricart JM, Illas F, Pacchioni G. Phys. Chem. Chem. Phys. 2010; 12: 10723
    • 14c Pal R, Wang LM, Pei Y, Wang LS, Zeng XC. J. Am. Chem. Soc. 2012; 134: 9438
    • 15a Zhu Y, Qian H, Jin R. Chem. - A Eur. J. 2010; 16: 11455
    • 15b Zhu Y, Qian H, Zhu M, Jin R. Adv. Mater. 2010; 22: 1915
    • 16a Astruc D, Lu F, Aranzaes JR. Angew. Chem. Int. Ed. 2005; 44: 7852
    • 16b Li MB, Tian SK, Wu Z. Nanoscale 2014; 6: 5714
    • 16c Fujita KI, Fujii A, Sato J, Yasuda H. Synlett 2016; 27: 1941
    • 17a Collins CB, Tofanelli MA, Crook MF, Phillips BD, Ackerson CJ. RSC Adv. 2017; 7: 45061
    • 17b Dreier TA, Ackerson CJ. Angew. Chem. Int. Ed. 2015; 54: 9249
    • 17c Tofanelli MA, Ackerson CJ. J. Am. Chem. Soc. 2012; 134: 16937
  • 18 Preparation of the Au25(SC2H4Ph)18 Catalyst The Au25(SC2H4Ph)18 nanoclusters were synthesized according to a previously reported method.20 HAuCl4·4H2O (2 mmol, 0.8 g) was dissolved in 150 ml tetrahydrofuran (THF) solution containing tetraoctylammonium bromide (2.4 mmol, 1.3 g) at room temperature. After stirring for 15 min, 2-phenylethanethiol (10 mmol, 1.4 g) was added, and the solution was stirred for 15 min 2 h. A cold aqueous solution (25 ml) containing NaBH4 (20 mmol, 0.8 g) was then rapidly added to the solution, and the solution was then stirred at room temperature. After 15 h, the THF solvent was evaporated, and the remaining red brown powder was washed with methanol to remove excess thiol and other byproducts. The Au25(SC2H4Ph)18 clusters were extracted from the dried sample using acetonitrile.
  • 19 General Procedure and the Analytical Data of some Typical Compounds The reaction of aniline (1a) with phenylacetylene (2a) was performed as follows. The prepared 1 mM Au25(SC2H4Ph)18nanocluster solution in toluene (0.5 mL) was added to a Schlenk flask and the solvent was evaporated. Then, 1a (0.5 mmol, 47 mg) and 2a (1.5 mmol, 153 mg) were added, and the solution was stirred for 24 h at 70 °C under O2 (balloon). The chemical yield of imine 3a was determined by integrating the 1H NMR spectrum with respect to an internal standard (1,3,5-trimethoxybenzene). Compound 3a was isolated by column chromatography (25 μm silica gel, n-hexane/ethyl acetate = 99:1). The yield was 63% (61 mg). 3a N-(1-Phenylethylidene)benzenamine Yellow solid; mp 40–41 °C. 1H NMR (400 MHz CDCl3): δ = 7.98–7.96 (2 H, m), 7.45–7.44 (3 H, m), 7.34 (2 H, t, J = 7.7 Hz), 7.08 (1 H, t, J = 7.2 Hz), 6.79 (2 H, d, J = 7.9 Hz), 2.22 (3 H, s); 13C NMR (100 MHz CDCl3): δ = 165.48 (C), 151.65 (C), 139.42 (C), 130.46 (CH), 128.94 (CH), 128.36 (CH), 127.14 (CH), 123.20 (CH), 119.36 (CH), 17.38 (CH3). GC-MS (EI): m/z (relative intensity) = 195 (53) [M]+, 180 (100), 118 (12). 3b N-(1-Phenylethylidene)-1-naphthalenamine Yellow solid; mp 85–86 °C. 1H NMR (400 MHz CDCl3) δ = 8.12–8.10 (2 H, m), 7.84–7.77 (2 H, m), 7.60–7.40 (7 H, m), 6.78 (1 H, d, J = 7.2 Hz), 2.19 (3 H, s). 13C NMR (400 MHz CDCl3): δ = 166.42 (C), 147.93 (C), 139.20 (C), 134.15 (C), 130.64 (CH), 128.43 (CH), 127.94 (CH), 127.28 (CH), 126.08 (CH), 125.90 (C), 125.88 (CH), 125.37 (CH), 123.55 (CH), 123.21 (CH), 113.44 (CH), 17.66 (CH3); GC-MS (EI) m/z (relative intensity) = 246 (12), 245 (62) [M]+, 231 (20), 230 (100), 128 (6), 127 (53).
    • 20a Dharmaratne AC, Krick T, Dass A. J. Am. Chem. Soc. 2009; 131: 13604
    • 20b Yamazoe S, Takano S, Kurashige W, Yokoyama T, Nitta K, Negishi Y, Tsukuda T. Nat. Commun. 2016; 7: 10414