Synthesis 2019; 51(11): 2371-2378
DOI: 10.1055/s-0037-1610696
paper
© Georg Thieme Verlag Stuttgart · New York

Vinylation of Carbonyl Oxygen in 4-Hydroxycoumarin: Synthesis of Heteroarylated Vinyl Ethers

Rana Chatterjee
a  Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India   Email: adinath.majee@visva-bharati.ac.in
,
b  Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russian Federation
,
Grigory V. Zyryanov
b  Department of Organic and Biomolecular Chemistry, Chemical Engineering Institute, Ural Federal University, 19 Mira Street, 620002 Yekaterinburg, Russian Federation
c  I. Ya. Postovskiy Institute of Organic Synthesis, Ural Division of the Russian Academy of Sciences, 22 S. Kovalevskoy Street, 620219 Yekaterinburg, Russian Federation
,
Adinath Majee*
a  Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India   Email: adinath.majee@visva-bharati.ac.in
› Author Affiliations
A. Majee acknowledges the DST-RSF Major Research Project (Ref. No. INT/RUS/RSF/P-08) for financial support. S. Santra acknowledges the financial support from the Russian Science Foundation – Russia (Ref. # 18-73-00301).
Further Information

Publication History

Received: 07 January 2019

Accepted after revision: 28 January 2019

Publication Date:
07 March 2019 (eFirst)

Abstract

The unique nucleophilic character of the carbonyl oxygen of 4-hydroxy coumarin has been observed by the BF3·OEt2 catalyzed reaction of 4-hydroxycoumarin and alkynes. The reactions of 4-hydroxycoumarin and substituted 4-hydroxycoumarin with various terminal alkynes have been studied. In case of internal alkyne (prop-1-yn-1-ylbenzene), the reaction with 4-hydroxycoumarin led to the corresponding product with an E/Z ratio of 3:1. This protocol is operationally very simple and has much potential for the synthesis of heteroarylated vinyl ethers from basic chemicals.

Supporting Information

 
  • References

    • 1a Weigt S, Huebler N, Strecker R, Braunbeck T, Broschard TH. Reprod. Toxicol. 2012; 33: 133
    • 1b Hassan MZ, Osman H, Ali MA, Ahsan MJ. Eur. J. Med. Chem. 2016; 123: 236
    • 1c Yu D, Suzuki M, Xie L, Morris-Natschke SL, Lee KH. Med. Res. Rev. 2003; 23: 322
    • 1d Ji Q, Ge Z, Ge Z, Chen K, Wu H, Liu X, Huang Y, Yuan L, Yang X, Liao F. Eur. J. Med. Chem. 2016; 108: 166
    • 2a Medina FG, Marrero JG, Macías-Alonso M, González MC, Córdova-Guerrero I, García AG. T, Osegueda-Robles S. Nat. Prod. Rep. 2015; 32: 1472
    • 2b Murray RD. H. Nat. Prod. Rep. 1989; 12: 591
    • 2c Detsi A, Kontogiorgis C, Hadjipavlou-Litina D. Expert Opin. Ther. Pat. 2017; 27: 1201
    • 2d Barot KP, Jain SV, Kremer L, Singh S, Ghate MD. Med. Chem. Res. 2015; 24: 2771
    • 3a Jameel E, Umar T, Kumar J, Hoda N. Chem. Biol. Drug Des. 2016; 87: 21
    • 3b Nagamallu R, Srinivasan B, Ningappa MB, Kariyappa AK. Bioorg. Med. Chem. Lett. 2016; 26: 690
    • 3c Gutiérrez-Barranquero JA, Reen FJ, McCarthy RR, O’Gara F. Appl. Microbiol. Biotechnol. 2015; 99: 3303
    • 3d Thakur A, Singla R, Jaitak V. Eur. J. Med. Chem. 2015; 101: 476
    • 3e Emami S, Dadashpour S. Eur. J. Med. Chem. 2015; 102: 611
    • 3f Dandriyal J, Singla R, Kumar M, Jaitak V. Eur. J. Med. Chem. 2016; 119: 141
    • 3g Cao D, Liu Y, Yan W, Wang C, Bai P, Wang T, Tang M, Wang X, Yang Z, Ma B, Ma L, Lei L, Wang F, Xu B, Zhou Y, Yang T, Chen L. J. Med. Chem. 2016; 59: 5721
    • 3h Gnerre C, Catto M, Leonetti F, Weber P, Carrupt PA, Altomare C, Carotti A, Testa B. J. Med. Chem. 2000; 43: 4747
    • 4a Anand P, Singh B, Singh N. Bioorg. Med. Chem. 2012; 20: 1175
    • 4b Hwu JR, Lin SY, Tsay SC, De Clercq E, Leyssen P, Neyts J. J. Med. Chem. 2011; 54: 2114
    • 4c Borges F, Roleira F, Milhazes N, Santana L, Uriarte E. Curr. Med. Chem. 2005; 12: 887
    • 5a Arachchilage AP. W, Wang F, Feyer V, Plekan O, Acres RG, Prince KC. J. Phys. Chem. A 2016; 120: 7080
    • 5b Sousa CC. S, Morais VM. F, Matos MA. R. J. Chem. Thermodyn. 2010; 42: 1372
    • 5c Jacquot Y, Bermont L, Giorgi H, Refouvelet B, Adessi G, Daubrosse E, Xicluna A. Eur. J. Med. Chem. 2001; 36: 127
    • 6a Chavan AP. J. Chem. Res. 2006; 179
    • 6b Shah P, Santana MD, García J, Serrano JL, Naik M, Pednekar S, Kapdi AR. Tetrahedron 2013; 69: 1446
    • 6c Majumdar KC, Bhattacharyya T. Tetrahedron Lett. 2001; 42: 4231
    • 7a Jashari A, Imeri F, Ballazhi L, Shabani A, Mikhova B, Dräger G, Popovski E, Huwiler A. Bioorg. Med. Chem. 2014; 22: 2655
    • 7b Huang C.-N, Chuang R.-R, Kuo P.-Y, Yang D.-Y. Synlett 2008; 1825
    • 7c Brady I, Leane D, Hughes HP, Forster RJ, Keyes TE. Dalton Trans. 2004; 334
    • 7d Kotharkar SA, Shinde DB. Bioorg. Med. Chem. Lett. 2006; 16: 6181
    • 7e Yakushiji F, Haramo M, Miyadera Y, Uchiyama C, Takayama K, Hayashi Y. Tetrahedron Lett. 2014; 55: 3316
    • 7f Grigg R, Nurnabi M, Sarkar MR. A. Tetrahedron 2004; 60: 3359
    • 8a Chowdhury S, Chanda T, Gupta A, Koley S, Ramulu BJ, Jones RC. F, Singh MS. Eur. J. Org. Chem. 2014; 2964
    • 8b Liu Z, Ma Q, Liu Y, Wang Q. Org. Lett. 2014; 16: 236
  • 9 Halpern O, Waser P, Schmid H. Helv. Chim. Acta 1957; 40: 758

    • For a selection of our recent articles, see:
    • 10a Mahato S, Santra S, Chatterjee R, Zyryanov GV, Hajra A, Majee A. Green Chem. 2017; 19: 3282
    • 10b Ghosal NC, Santra S, Das S, Hajra A, Zyryanov GV, Majee A. Green Chem. 2016; 18: 565
    • 10c Ghosal NC, Santra S, Zyryanov GV, Hajra A, Majee A. Tetrahedron Lett. 2016; 57: 3551
    • 10d Santra S, Kopchuk DS, Kovalev IS, Zyryanov GV, Majee A, Charushin VN, Chupakhin ON. Green Chem. 2016; 18: 423
    • 10e Kovalev IS, Tania OS, Slovesnova NV, Kim GA, Santra S, Kopchuk DS, Slepukhin PA, Zyryanov GV, Majee A, Charushin VN, Chupakhin ON. Chem. Asian J. 2016; 11: 775
  • 11 CCDC 1854580 contains the supplementary crystallographic data for compound 3t. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 12 O’Connor TJ, Toste FD. ACS Catal. 2018; 8: 5947