Synthesis 2019; 51(03): 780-786
DOI: 10.1055/s-0037-1610997
paper
© Georg Thieme Verlag Stuttgart · New York

Total Synthesis of 5-Hydroxygoniothalamin

a  Department of Crop Protection Chemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India
b  School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518 060, Guangdong, P. R. of China
,
Guangyi Jin
b  School of Pharmaceutical Sciences, Shenzhen University Health Science Center, Shenzhen 518 060, Guangdong, P. R. of China
c  Cancer Research Center, Shenzhen University Health Science Center, Shenzhen 518 060, Guangdong, P. R. of China
,
Srinivas Kantevari*
a  Department of Crop Protection Chemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India
d  Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, Telangana, India   Email: [email protected]   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 13 July 2018

Accepted after revision: 05 September 2018

Publication Date:
01 October 2018 (online)


Abstract

The total synthesis of 5-hydroxygoniothalamin is achieved from commercially available l-xylose. The α,β-unsaturated-δ-lactone core is constructed in very good yield by utilizing one-carbon and two-carbon cis-Wittig olefinations and δ-lactonization using Yamaguchi conditions. Subsequent Grubbs cross-metathesis followed by desilylation results in 5-hydroxygoniothalamin.

Supporting Information

 
  • References

    • 1a Lahlou M. Exp. Opin. Drug Discovery 2007; 2: 697
    • 1b Butler MS. J. Nat. Prod. 2004; 67: 2141
    • 1c Lee K.-H. J. Nat. Prod. 2004; 67: 273
    • 1d Clardy J. Walsh C. Nature 2004; 432: 829
    • 2a Du L. Robles AJ. King JB. Powell DR. Miller AN. Mooberry SL. Cichewicz RH. Angew. Chem. Int. Ed. 2014; 53: 804
    • 2b Bauer A. Brönstrup M. Nat. Prod. Rep. 2014; 31: 35
    • 2c Hattum HV. Waldmann H. J. Am. Chem. Soc. 2014; 136: 11853
    • 2d Brown DG. Lister T. May-Dracka TL. Bioorg. Med. Chem. Lett. 2014; 24: 413
    • 2e Harvey AL. Edrada-Ebel R. Quinn RJ. Nat. Rev. Drug Discovery 2015; 14: 111
    • 2f Lee ML. Schneider G. J. Comb. Chem. 2001; 3: 284
    • 3a Yasui K. Tamura Y. Nakatani T. Kawada K. Ohtani M. J. Org. Chem. 1995; 60: 7554
    • 3b Fang XP. Anderson JE. Chang CJ. McLaughlin JL. Fanwick PE. J. Nat. Prod. 1991; 54: 1034
    • 3c Collins I. J. Chem. Soc., Perkin Trans. 1 1999; 1377
    • 4a Yasui K. Tamura Y. Nakatani T. Kawada K. Ohtani M. J. Org. Chem. 1955; 60: 7567
    • 4b Bermejo A. Blazqoz MA. Rao KS. Cortes D. Phytochem. Anal. 1999; 10: 127
  • 5 Favier LS. Maria AO. M. Wendel GH. Borkowski EJ. Giordano OS. Pelzer L. Tonn CE. J. Ethnopharmacol. 2005; 100: 260
  • 6 Rungeler P. Castro V. Mora G. Goren N. Vichnewski W. Pahl HL. Merfort I. Schmidt TJ. Bioorg. Med. Chem. 1999; 7: 2343
    • 7a Goh SH. Ee GC. L. Chuah CH. Mak TC. W. Nat. Prod. Lett. 1995; 5: 255
    • 7b de Fatima A. Modolo LV. Conegero LS. Pilli RA. Ferreira CV. Kohn LK. de Carvalho JE. Curr. Med. Chem. 2006; 13: 3371
    • 7c Boucard V. Broustal G. Campagne JM. Eur. J. Org. Chem. 2007; 2: 225
    • 7d Tuchindra P. Munyoo B. Pohmakotr M. Thinapong P. Sophasan S. Santisuk T. Reutrakul V. J. Nat. Prod. 2006; 69: 1728
    • 7e Grove JF. J. Chem. Soc., Perkin Trans. 1 1985; 865
    • 7f Prasad KR. Gutala P. Tetrahedron 2012; 68: 7489
    • 7g Evans RH. Jr. Ellestad GA. Kunstman MP. Tetrahedron Lett. 1969; 22: 1791
    • 7h Schlessinger RH. Gillman KW. Tetrahedron Lett. 1999; 40: 1257
  • 8 Sam TW. Sew-Yeu C. Matsjeh S. Gan EK. Razak D. Mohamed AL. Tetrahedron Lett. 1987; 28: 2541
    • 9a Harris JM. O’Doherty GA. Org. Lett. 2000; 2: 2983
    • 9b Harris JM. O’Doherty GA. Tetrahedron 2001; 57: 5161
    • 10a Pospísil J. Marko IE. Tetrahedron Lett. 2006; 47: 5933
    • 10b Gupta P. Naidu SV. Kumar P. Tetrahedron Lett. 2004; 45: 849
    • 10c Yadav JS. Kumar NN. Reddy MS. Prasad AR. Tetrahedron 2007; 63: 2689
    • 10d de Fatima A. Kohn LK. Antonio MA. de Carvalho JE. Pilli RA. Bioorg. Med. Chem. 2004; 12: 5437
    • 10e Lee H.-Y. Sampath V. Yoon Y. Synlett 2009; 249
    • 10f Lin J. Qiu X.-L. Qing F.-L. Beilstein J. Org. Chem. 2010; 6: 1
    • 10g Wach JY. Stephan G. Kutay U. Gademann K. Bioorg. Med. Chem. Lett. 2010; 20: 2843
    • 11a Bouillon ME. Pyne SG. Tetrahedron Lett. 2014; 55: 475
    • 11b Jiang B. Liu J.-F. Zhao S.-Y. J. Org. Chem. 2003; 68: 2376
    • 12a Ogba OM. Warner NC. O’Leary DJ. Grubbs RH. Chem. Soc. Rev. 2018; 47: 4510
    • 12b Deraedt C. d’Halluin M. Astruc D. Eur. J. Inorg. Chem. 2013; 4881