Synthesis 2019; 51(03): 739-746
DOI: 10.1055/s-0037-1611058
paper
© Georg Thieme Verlag Stuttgart · New York

Selective Conversion of CO2 and Switchable Alcohols into Linear or Cyclic Carbonates via Versatile Zinc Catalysis

State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, South Taoyuan Road 27, Taiyuan, 030001, P. R. China   Email: songqingwen@sxicc.ac.cn   Email: pingliu@sxicc.ac.cn
,
Qing-Ning Zhao
,
Jing-Yuan Li
,
Kan Zhang
,
Ping Liu*
› Author Affiliations
Financial support from the National Natural Science Foundation of China (21602232) and the Natural Science Foundation of Shanxi Province (201701D221057) are gratefully acknowledged.
Further Information

Publication History

Received: 26 July 2018

Accepted after revision: 07 September 2018

Publication Date:
27 September 2018 (online)


Abstract

It is promising and challenging to achieve the effective construction of carbonates using CO2 and a non-noble metal catalyst. Herein, selective catalytic conversion of CO2 and switchable alcohol candidates to produce linear or cyclic carbonates and α-hydroxy ketones via effective zinc catalyst was developed. A series of primary alcohols and cyclohexanol, 1,2-diols, and water can serve as nucleophiles to give alkyl or aryl 2-substituted-3-oxobutan-2-yl carbonates, substituted 1,3-dioxolan-2-ones, 3-substituted 3-hydroxybutan-2-ones, respectively with excellent selectivity and high yields.

Supporting Information

 
  • References

    • 1a Yang Z.-Z, He L.-N, Gao J, Liu A.-H, Yu B. Energy Environ. Sci. 2012; 5: 6602
    • 1b Aresta M, Dibenedetto A, Angelini A. Chem. Rev. 2014; 114: 1709
    • 1c Liu Q, Wu L, Jackstell R, Beller M. Nat. Commun. 2015; 6: 5933
    • 1d He M, Sun Y, Han B. Angew. Chem. Int. Ed. 2013; 52: 9620
    • 1e Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E. Chem. Rev. 2015; 115: 12936
    • 1f Song Q.-W, Zhou Z.-H, He L.-N. Green Chem. 2017; 19: 3707
    • 1g Zhang Q, Yuan H.-Y, Fukaya N, Yasuda H, Choi J.-C. Green Chem. 2017; 19: 5614

      For selected reviews, see:
    • 2a Lu X.-B, Darensbourg DJ. Chem. Soc. Rev. 2012; 41: 1462
    • 2b Zhang H, Liu H.-B, Yue J.-M. Chem. Rev. 2014; 114: 883
    • 2c Schäffner B, Schäffner F, Verevkin SP, Börner A. Chem. Rev. 2010; 110: 4554
    • 2d Martín C, Fiorani G, Kleij AW. ACS Catal. 2015; 5: 1353
    • 2e Shaikh RR, Pornpraprom S, D’Elia V. ACS Catal. 2018; 8: 419
    • 2f Büttner H, Longwitz L, Steinbauer J, Wulf C, Werner T. Top. Curr. Chem. 2017; 375: 50

      For selected examples, see:
    • 3a Lang X.-D, He L.-N. Chem. Rec. 2016; 16: 1337
    • 3b Parker HL, Sherwood J, Hunt AJ, Clark JH. ACS Sustainable Chem. Eng. 2014; 2: 1739
    • 3c Sathish M, Sreeram KJ, Rao JR, Nair BU. ACS Sustainable Chem. Eng. 2016; 4: 1032
    • 3d Sonnati MO, Amigoni S, de Givenchy EP. T, Darmanin T, Choulet O, Guittard F. Green Chem. 2013; 15: 283
    • 4a Shaikh AA. G, Sivaram S. Chem. Rev. 1996; 96: 951
    • 4b Song JL, Zhang BB, Wu TB, Yang GY, Han BX. Green Chem. 2011; 13: 922
    • 4c Huang S, Yan B, Wang S, Ma X. Chem. Soc. Rev. 2015; 44: 3079
    • 5a Trost BM, Xu J, Reichle M. J. Am. Chem. Soc. 2007; 129: 282
    • 5b Sun N, Chen M, Liu Y. J. Org. Chem. 2014; 79: 4055
    • 5c Stainforth NE, Cutting GA, John MP, Willis MC. Tetrahedron: Asymmetry 2009; 20: 741
  • 6 Gennen S, Grignard B, Tassaing T, Jérôme C, Detrembleur C. Angew. Chem. Int. Ed. 2017; 56: 10394
    • 7a Cá ND, Gabriele B, Ruffolo G, Veltri L, Zanetta T, Costa M. Adv. Synth. Catal. 2011; 353: 133
    • 7b Zhou ZH, Song QW, Xie JN, Ma R, He LN. Chem. Asian J. 2016; 11: 2065
    • 7c Hu JY, Ma J, Lu L, Qian QL, Zhang ZF, Xie C, Han BX. ChemSusChem 2017; 10: 1292

      For selected examples of Fe catalysis, see:
    • 8a Peña-López M, Neumann H, Beller M. Eur. J. Org. Chem. 2016; 3721
    • 8b Cuesta-Aluja L, Masdeu-Bultó AM. ChemSelect 2016; 1: 2065
    • 8c Buonerba A, De Nisi A, Grassi A, Milione S, Capacchione C, Vagin S, Rieger B. Catal. Sci. Technol. 2015; 5: 118

      For selected examples of Co catalysis, see:
    • 9a Shen Y.-M, Duan W.-L, Shi M. J. Org. Chem. 2003; 68: 1559
    • 9b Ghosh A, Ramidi P, Pulla S, Sullivan SZ, Collom SL, Gartia Y, Munshi P, Biris AS, Noll BC, Berry BC. Catal. Lett. 2010; 137: 1
    • 9c Paddock RL, Hiyama Y, McKay JM, Nguyen ST. Tetrahedron Lett. 2004; 45: 2023

      For selected examples of Ni catalysis, see:
    • 10a Wang X, Liu Y, Martin R. J. Am. Chem. Soc. 2015; 137: 6476
    • 10b Moragas T, Gaydou M, Martin R. Angew. Chem. Int. Ed. 2016; 55: 5053
    • 10c Ninokata R, Yamahira T, Onodera G, Kimura M. Angew. Chem. Int. Ed. 2017; 56: 208

      For selected examples of Zn catalysis, see:
    • 11a Ma R, He L.-N, Zhou Y.-B. Green Chem. 2016; 18: 226
    • 11b Li F, Xiao L, Xia C, Hu B. Tetrahedron Lett. 2004; 45: 8307
    • 11c Cuesta-Aluja L, Campos-Carrasco A, Castilla J, Reguero M, Masdeu-Bultó AM, Aghmiz A. J. CO2 Util. 2016; 14: 10
    • 11d Mercadé E, Zangrando E, Claver C, Godard C. ChemCatChem 2016; 8: 234
    • 11e Hu JY, Ma J, Zhu QG, Qian QL, Han HL, Mei QQ, Han BX. Green Chem. 2016; 18: 382
    • 11f Liu X, Wang M.-Y, Wang S.-Y, Wang Q, He L.-N. ChemSusChem 2017; 10: 1210
    • 11g Zhang Q, Yuan H.-Y, Fukaya N, Yasuda H, Choi J.-C. ChemSusChem 2017; 10: 1501
    • 11h Desens W, Kohrt C, Spannenberga A, Werner T. Org. Chem. Front. 2016; 3: 156
  • 12 Song Q.-W, Chen W.-Q, Ma R, Yu A, Li Q.-Y, Chang Y, He L.-N. ChemSusChem 2015; 8: 821
  • 13 Zhou Z.-H, Song Q.-W, He L.-N. ACS Omega 2017; 2: 337
  • 14 Hoyos P, Sinisterra J.-V, Molinari F, Alcántara AR, de María PD. Acc. Chem. Res. 2010; 43: 288
  • 15 He H, Qi C, Hu X, Guan Y, Jiang H. Green Chem. 2014; 16: 3729
  • 16 Zhao Y, Yang Z, Yu B, Zhang H, Xu H, Hao L, Han B, Liu Z. Chem. Sci. 2015; 6: 2297