Synthesis 2019; 51(11): 2287-2292
DOI: 10.1055/s-0037-1611726
© Georg Thieme Verlag Stuttgart · New York

A Graphene Oxide Nanosheet Supported NHC–Palladium Complex as a Highly Efficient and Recyclable Suzuki Coupling Catalyst

Yingjie Qian
Jaeil So
Sang-Yung Jung
Sosan Hwang
Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea   Email:   Email:
Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Nam-gu, Incheon 22212, South Korea   Email:   Email:
› Author Affiliations
This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (grant number: NRF-2015R1A4A1042434).
Further Information

Publication History

Received: 30 October 2018

Accepted after revision: 17 January 2019

Publication Date:
20 March 2019 (eFirst)

These authors contributed equally to this work.


A practical heterogeneous catalyst was prepared by anchoring a triazine-tethered N-heterocyclic carbene (NHC)–palladium complex on the surface of graphene oxide (GO) nanosheets. The immobilized complex was characterized by X-ray photoelectron spectroscopy, field-emission transmission electron microscopy, energy-dispersive X-ray spectroscopy, and surface area analysis. It proved to be a highly active and durable heterogeneous catalyst for Suzuki coupling reactions. At room temperature, the use of this catalyst enabled the preparation of various biaryls and heterobiaryls in short reaction times. The catalytic system could be recycled at least 10 times with almost consistent activity. The results reveal that the stable palladium complex is strongly anchored on the surface of GO nanosheets. Interestingly, an open planar network of the GO nanosheet support plays a role during the catalytic process in enhancing the catalytic activity.

Supporting Information

  • References

  • 1 Seechurn CC. C. J, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 2a Lee JY, Ghosh D, Lee JY, Wu SS, Hu CH, Liu SD, Lee HM. Organometallics 2014; 33: 6481
    • 2b Lee D.-H, Jin M.-J. Org. Lett. 2011; 13: 252
  • 3 Welch CJ, Albaneze-Walker J, Leonard WR, Biba M, DaSilva J, Henderson D, Laing B, Mathre DJ, Spencer S, Bu XD, Wang TB. Org. Process Res. Dev. 2005; 9: 198
  • 4 Astruc D. Inorg. Chem. 2007; 46: 1884
  • 5 Jin M.-J, Lee D.-H. Angew. Chem. Int. Ed. 2010; 122: 1137
    • 6a Xue ZQ, Huang PP, Li TS, Qin PX, Xiao D, Liu MH, Chen PL, Wu YJ. Nanoscale 2017; 9: 781
    • 6b Yuan DZ, Chen L, Yuan LG, Liao SJ, Yang MM, Zhang QH. Chem. Eng. J. 2016; 287: 241
  • 7 Veerakumar P, Thanasekaran P, Lu KL, Liu SB, Rajagopal S. ACS Sustainable Chem. Eng. 2017; 5: 6357
  • 8 Lowe BM, Skylaris CK, Green NG. J. Colloid Interface Sci. 2015; 451: 231
  • 9 Julkapli NM, Bagheri S. Int. J. Hydrogen Energy 2015; 40: 948
    • 10a Giacalone F, Campisciano V, Calabrese C, Parola VL, Syrgiannis Z, Prato M, Gruttadauria M. ACS Nano 2016; 10: 4627
    • 10b Jawale DV, Gravel E, Boudet C, Shah N, Geertsen V, Li HY, Namboothiri IN. N, Doris E. Catal. Sci. Technol. 2015; 5: 2388
    • 10c Song HQ, Zhu Q, Zheng XJ, Chen XG. J. Mater. Chem. A 2015; 3: 10368
    • 11a Chen XM, Wu GH, Chen JM, Chen X, Xie ZX, Wang XR. J. Am. Chem. Soc. 2011; 133: 3693
    • 11b Fan XB, Zhang GL, Zhang FB. Chem. Soc. Rev. 2015; 44: 3023
  • 12 Baran T, Sargin I, Kaya M, Mentes A, Ceter T. J. Colloid Interface Sci. 2017; 486: 194
    • 13a Scheuermann GM, Rumi L, Steurer P, Bannwarth W, Mulhaupt R. J. Am. Chem. Soc. 2009; 131: 8262
    • 13b Yamamoto SI, Kinoshita H, Hashimoto H, Nishina Y. Nanoscale 2014; 6: 6501
    • 13c Santra S, Hota PK, Bhattacharyya R, Bera P, Ghosh P, Mandal SK. ACS Catal. 2013; 3: 2776
    • 14a Valente C, Calimsiz S, Hoi KH, Mallik D, Sayah M, Organ MG. Angew. Chem. Int. Ed. 2012; 51: 3314
    • 14b Hopkinson MN, Richter C, Schedler M, Glorius F. Nature 2014; 510: 485
  • 15 Xiao LH, Zheng X, Zhao TY, Sun LY, Liu FQ, Gao G, Dong A. Colloid Polym. Sci. 2013; 291: 2359
  • 16 Fu YS, Zhu JW, Hu C, Wu XD, Wang X. Nanoscale 2014; 6: 12555
  • 17 Liu WS, Koh KL, Lu JL, Yang LP, Phua S, Kong JH, Chen Z, Lu XH. J. Mater. Chem. 2012; 22: 18395
  • 18 Zhao QS, Zhu YZ, Sun Z, Li Y, Zhang GL, Zhang FB, Fan XB. J. Mater. Chem. A 2015; 3: 2609
  • 19 Alonso F, Beletskaya IP, Yus M. Tetrahedron 2008; 64: 3047
  • 20 Tyrrell E, Brookes P. Synthesis 2003; 469
  • 21 Gao C, Zhou HJ, Wei SP, Zhao YS, You JS, Gao G. Chem. Commun. 2013; 49: 1127