Synthesis 2019; 51(11): 2409-2429
DOI: 10.1055/s-0037-1611736
paper
© Georg Thieme Verlag Stuttgart · New York

The Quest for Double Vicinal C–H Bond Activation on the (η 5:η 5-Fulvalene)diiridium Platform: Syntheses and Structures of (η 5:η 5-Fulvalene)Ir2(ortho-μ-C6H4)(CO)2 (IrIr) and Related Complexes

Judith Baumgartner
,
Robert G. Bergman*
,
Bernd Kayser
,
Theodore P. Klupinski
,
Yong Kwang Park
,
Department of Chemistry, University of California at Berkeley, Berkeley, CA 94720-1460, USA   Email: kpcv@berkeley.edu
,
Michael J. West
,
Bolin Zhu
› Author Affiliations
Support by the NSF (CHE 0907800) and the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division, of the U.S. Department of Energy, under Contract DE-AC02-05CH11231, is gratefully acknowledged.
Further Information

Publication History

Received: 07 January 2019

Accepted: 01 February 2019

Publication Date:
14 March 2019 (eFirst)

Abstract

The fulvalene diiridium platform was scrutinized for its potential to effect double vicinal C–H activation of C6H6 and C6H12, respectively. For this purpose, an improved preparation of Fv[Ir(CO)2]2 was developed, and the syntheses of the new complexes FvIr(CO)2Ir(CO)(η 2-C6F6), Fv[Ir(CO)(η 2-C6F6)]2, Fv[Ir(CH2=CH2)2]2 (X-ray), Fv[Ir(PMe3)(H)2]2 (X-ray), and (2,2′,3,3′-tetra-tert-butylFv)[Ir(CO)2]2 were accomplished. When irradiated in C6H6, these molecules succeeded to varying degrees, and best for (2,2′,3,3′-tetra-tert-butylFv)[Ir(CO)2]2, in the double metalation of the aromatic ring to engender ligating Ir2(ortho-μ-C6H4)(CO)2 (IrIr) moieties, in addition to their precursor mono(phenyliridium hydride) constructs. A competing photochemical pathway is evident by the formation of diastereomers of Fv (or 2,2’,3,3’-tetra-tert-butylFv) [Ir(CO)(Ph)(H)]2 and the resulting dehydrogenated ligated [Ir(CO)(Ph)]2 (IrIr). The structures of FvIr2(ortho-µ-C6H4)(CO)2 (IrIr) and trans-Fv[Ir(CO)(Ph)]2 (IrIr) were corroborated by X-ray analyses. Efforts to realize C–H bond activations with C6H12 generally failed or fared very poorly, with the exception of the tert-butylFv system, which enabled single, but not further, insertion to give (2,2′,3,3′-tetra-tert-butylFv)[Ir(CO)(Cy)(H)][Ir(CO)2] in 34% yield. To explore the relevant chemistry of phenyl- and alkyliridium species attached to Fv, several such derivatives were made by independent routes, adding knowledge to the fundamental behavior of this category of molecules. Where appropriate and for comparative purposes, similar reactions were performed on the corresponding Cp- and 1,2-di-tert-butylCpIr(CO)2 relatives.

Supporting Information

 
  • References


    • For selected recent reviews, see:
    • 1a Saint-Denis TG, Zhu R.-Y, Chen G, Wu Q.-F, Yu J.-Q. Science 2018; 359: 759
    • 1b Hu Y, Zhou B, Wang C. Acc. Chem. Res. 2018; 51: 816
    • 1c Cano R, Mackey K, McGlacken GP. Catal. Sci. Technol. 2018; 8: 1251
    • 1d Hu L, Liu YA, Liao X. Synlett 2018; 29: 375
    • 1e Karimov RR, Hartwig JF. Angew. Chem. Int. Ed. 2018; 57: 4234
    • 1f Xu Y, Dong G. Chem. Sci. 2018; 9: 1424
    • 1g Prakash S, Kuppusamy R, Cheng C.-H. ChemCatChem 2018; 10: 683
    • 1h Gensch T, James MJ, Dalton T, Glorius F. Angew. Chem. Int. Ed. 2018; 57: 2296
    • 1i Chu JC. K, Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62
    • 1j Isr. J. Chem. 2017; 57: Issues 10-11
    • 1k Topics in Organometallic Chemistry, Vol. 56. Dixneuf PH, Doucet H. Springer; Switzerland: 2016
    • 1l Hartwig JF. J. Am. Chem. Soc. 2015; 138: 2

      For some recent illustrative reviews, see:
    • 2a Ito H, Ozaki K, Itami K. Angew. Chem. Int. Ed. 2017; 56: 11144
    • 2b Gulías M, Mascareñas JL. Angew. Chem. Int. Ed. 2016; 55: 11000
    • 2c Li S.-S, Qin L, Dong L. Org. Biomol. Chem. 2016; 14: 4554
    • 2d Kuninobu Y, Sueki S. Synthesis 2015; 47: 3823
    • 2e Le Bras J, Muzart J. Synthesis 2014; 46: 1555

      For very recent examples, see:
    • 3a Żyła-Karwowska M, Moshniaha L, Hong Y, Zhylitskaya H, Cybińska J, Chmielewski PJ, Lis T, Kim D, Stępień M. Chem. Eur. J. 2018; 24: 7525
    • 3b Ritschel B, Poater J, Dengel H, Bickelhaupt FM, Lichtenberg C. Angew. Chem. Int. Ed. 2018; 57: 3825
    • 3c Korvorapun K, Kaplaneris N, Rogge T, Warratz S, Stückl AC, Ackermann L. ACS Catal. 2018; 8: 886

      For selected recent reviews, see:
    • 4a Bay KL, Yang Y.-F, Houk KN. J. Organomet. Chem. 2018; 864: 19
    • 4b Topics in Organometallic Chemistry, Vol. 59. Kalck P. Springer; Switzerland: 2016
    • 4c Fu J, Huo X, Li B, Zhang W. Org. Biomol. Chem. 2017; 15: 9747
    • 5a See: Börjesson K, Ćoso D, Gray V, Grossman JC, Guan J, Harris CB, Hertkorn N, Hou Z, Kanai Y, Lee D, Lomont JP, Majumdar A, Meier SK, Moth-Poulsen K, Myrabo RL, Nguyen SC, Segalman RA, Srinivasan V, Tolman WB, Vinokurov N, Vollhardt KP. C, Weidman TW. Chem. Eur. J. 2014; 20: 15587 ; and references cited therein

    • For selected reviews, see:
    • 5b González-Maupoey M, Tabernero V, Cuenca T. Coord. Chem. Rev. 2009; 253:  1854
    • 5c Aguirre-Etcheverry P, O’Hare D. Chem. Rev. 2010; 110: 4839
    • 5d Ceccon A, Santi S, Orian L, Bisello A. Coord. Chem. Rev. 2004;  248:  683
    • 5e de Azevedo CG, Vollhardt KP. C. Synlett 2002; 1019
    • 5f McGovern PA, Vollhardt KP. C. Synlett 1990; 493

      For selected reviews, see:
    • 6a Bergman RG. Adv. Chem. Ser. 1992;  230:  211
    • 6b Bergman RG. J. Organomet. Chem. 1990; 400: 273
    • 6c Janowicz AH, Periana RA, Buchanan JM, Kovac CA, Stryker JM, Wax MJ, Bergman RG. Pure Appl. Chem. 1984; 56: 13
  • 7 Rausch MD, Gastinger RG, Gardner SA, Brown RK, Wood JS. J. Am. Chem. Soc. 1977; 99: 7870
  • 8 Tan X, Li B, Xu S, Song H, Wang B. J. Organomet. Chem. 2013; 735: 72
  • 9 Rausch MD, Spink WC, Conway BG, Rogers RD, Atwood JL. J. Organomet. Chem. 1990; 383: 227
  • 10 Roberto D, Cariati E, Psaro R, Ugo R. Organometallics 1994; 13: 4227
  • 11 See, for example: Mahr A, Nürnberg O, Werner H. Z. Anorg. Allg. Chem. 2003; 629: 91
  • 12 See: Bell TW, Brough SA, Partridge MG, Perutz RN, Rooney AD. Organometallics 1993; 12: 2933
  • 13 CCDC 1886785 (7), CCDC 1886784 (8-trans), CCDC 1589295 (33), CCDC 1589294 (34), and CCDC 1589293 (35) contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.

    • For additional examples of metal-metal bonded diiridabenzyne complexes, see:
    • 14a Esswein AJ, Veige AS, Piccoli PM. B, Schultz AJ, Nocera DG. Organometallics 2008; 27: 1073
    • 14b Grushin VV, Vymenits AB, Yanovsky AI, Struchkov YT, Vol’pin ME. Organometallics 1991; 10: 48
  • 15 Interestingly, in the analogous [Cp*Ir(CO)(para-C6F4CN)]2, the cis-isomer adopts the bridging CO configuration (~νco = 1770 cm–1), its diastereomer the terminal alternative (~νco = 2051 cm–1): Mak KH. G, Chan PK, Fan WY, Ganguly R, Leong WK. Organometallics 2013; 32: 1053

    • Similar (alkylCp)Ir(phosphine)(Ph)(H) complexes are comparatively robust, see:
    • 16a Mobley TA, Bergman RG. J. Am. Chem. Soc. 1998; 120: 3253
    • 16b Buchanan JM, Stryker JM, Bergman RG. J. Am. Chem. Soc. 1986; 108: 1537
  • 17 For an illustrative review of the mechanisms of metal-mediated C–H activations, see: Gunnoe TB. In Physical Inorganic Chemistry: Reactions, Processes, and Applications. Bakac A. Wiley; Hoboken: 2010: 495

    • For other examples of Fv(M–M)(μ-CO) complexes, see:
    • 18a Kahn AP, Boese R, Blümel J, Vollhardt KP. C. J. Organomet. Chem. 1994; 472: 149
    • 18b Reference 9.
  • 19 The Cp analogue Cp2Ir2(CO)3 has been made by treatment of CpIr(CO)2 with Me3NO, conditions which failed to lead to observable quantities of B from 5, see: Shapley JR, Adair PC, Lawson RJ, Pierpont CG. Inorg. Chem. 1982; 21: 1701

    • For selected examples of dinuclear iridium C–H activation, see:
    • 20a Takahashi Y, Fujita K, Yamaguchi R. Eur. J. Inorg. Chem. 2008;  28:  4360
    • 20b Fujita K, Takahashi Y, Nakaguma H, Hamada T, Yamaguchi R. J. Organomet. Chem. 2008; 693: 3375 ; and references cited therein
    • 20c Oishi M, Kato T, Nakagawa M, Suzuki H. Organometallics 2008; 27: 6046
  • 21 For the structure of an Ir–Ir bonded cationic relative of D, see: Yan X, Batchelor RJ, Einstein FW. B, Zhang X, Nagelkerke R, Sutton D. Inorg. Chem. 1997; 36: 1237

    • For examples of H2 elimination from non-metal–metal-bonded dinuclear complexes, see:
    • 22a Majumdar M, Sinha A, Ghatak T, Patra SK, Sadhukhan N, Rahaman SM. W, Bera JK. Chem. Eur. J. 2010; 16: 2574
    • 22b McDonald R, Sutherland BR, Cowie M. Inorg. Chem. 1987; 26: 3333
  • 23 Hoyano JK, Graham WA. G. J. Am. Chem. Soc. 1982; 104: 3723
  • 24 See, for example: Wang D, Angelici RJ. Inorg. Chem. 1996; 35: 1321
  • 25 For a pertinent review, see: O’Connor JM. In Science of Synthesis, Vol. 1. Lautens M. Thieme; Stuttgart: 2001: 617
  • 26 Hoyano JK, McMaster AD, Graham WA. G. J. Am. Chem. Soc. 1983; 105: 7190

    • For selected pertinent references, see:
    • 27a Kumar P, Gupta RK, Pandey DS. Chem. Soc. Rev. 2014; 43: 707
    • 27b Liu J, Wu X, Iggo JA, Xiao J. Coord. Chem. Rev. 2008; 252: 782
    • 27c Faller JW, Parr J, Lavoie AR. New J. Chem. 2003; 27: 899
    • 27d Brunner H. Angew. Chem. Int. Ed. 1999; 38: 1194
    • 27e Ward TR, Schafer O, Daul C, Hofmann P. Organometallics 1997; 16: 3207

      For iodide-bridged Fv complexes, see:
    • 29a Reference 5a .
    • 29b Abrahamson HB, Heeg MJ. Inorg. Chem. 1984; 23: 2281
    • 30a Gardner SA, Gordon HB, Rausch MD. J. Organomet. Chem. 1973; 60: 179
    • 30b Yamazaki H. Bull. Chem. Soc. Jpn. 1971; 44: 582
    • 30c 13C NMR (75 MHz, acetone-d 6): δ = 161.6, 89.7.

      Similarly, complex 2 has been reported to react with iodomethane to give small amounts of Cp*Ir(CO)I2:
    • 31a King RB, Efraty A. J. Organomet. Chem. 1971; 27: 409
    • 31b Maitlis PM, Kang JW. J. Organomet. Chem. 1971; 26: 393
  • 32 See: Jones WD, Feher FJ. Inorg. Chem. 1984; 23: 2376
    • 33a Bloyce PE, Rest AJ, Whitwell I. J. Chem. Soc., Dalton Trans. 1990; 813
    • 33b Bloyce PE, Rest AJ, Whitwell I, Graham WA. G, Holmes-Smith R. J. Chem. Soc., Chem. Commun. 1988; 846
    • 33c Rest AJ, Whitwell I, Graham WA. G, Hoyano JK, McMaster AD. J. Chem. Soc., Dalton Trans. 1987; 1181
  • 34 Periana RA, Bergman RG. J. Am. Chem. Soc. 1986; 108: 7332
  • 35 For an excellent review of hydride acidities, see: Morris RH. Chem. Rev. 2016; 116: 8588

    • For examples of the protonation of CpIr phosphine or phosphite complexes, see:
    • 36a Heinekey DM, Millar JM, Koetzle TF, Payne NG, Zilm KW. J. Am. Chem. Soc. 1990; 112: 909
    • 36b Werner H, Wolf J, Höhn A. J. Organomet. Chem. 1985; 287: 395
    • 37a For a review, see: Janak KE. Comprehensive Organometallic Chemistry III, Vol. 1. Mingos DM. P, Crabtree RH. Elsevier; Amsterdam: 2007. 54
    • 37b Janowicz AH, Bergman RG. J. Am. Chem. Soc. 1983; 105: 3929
    • 37c Bullock RM, Headford CE. L, Hennessy KM, Kegley SE, Norton JR. J. Am. Chem. Soc. 1989; 111: 3897
  • 38 For a review of the photochemistry of transition metal hydrides, see: Perutz RN, Procacci B. Chem. Rev. 2016; 116: 8506
    • 39a For a review, see: Pike SD, Crimmin MR, Chaplin AB. Chem. Commun. 2017; 53: 3615
    • 39b Cp*Ir(CO)2 (2) in C6F6 photolyzes to Cp*Ir(CO)(η 2-C6F6): Mak KH. G, Chan PK, Fan WY, Ganguly R, Leong WK. Organometallics 2013; 32: 1053
    • 39c CpIr(PMe3)(H)2 in C6F6 converts on irradiation into CpIr(PMe3)(η 2-C6F6) and comparable amounts of CpIr(PMe3)(C6F5)(H): Belt ST, Helliwell M, Jones WD, Partridge M, Perutz RN. J. Am. Chem. Soc. 1993; 115: 1429
    • 39d Cp (and Cp*) Ir(C2H4)2 undergoes photochemical displacement of ethene by C6F6: Bell TW, Helliwell M, Partridge MG, Perutz RN. Organometallics 1992; 11: 1911
    • 39e CpIr(CO)2 (1) photoconverts into CpIr(CO)(Ph)(H) (10) in C6F6, but the intermediacy of CpIr(CO)(η 2-C6F6) (32) was not recognized: Marx DE, Lees AJ. Inorg. Chem. 1988; 27: 1121
  • 40 For the related photolytic conversion of CpRh(PMe3)(η 2-C6F6) in C6H6 into CpRh(PMe3)(Ph)(H), see: Belt ST, Duckett SB, Helliwell M, Perutz RN. J. Chem. Soc., Chem. Commun. 1989; 928
  • 41 A preliminary report without detailed experimental descriptions has appeared: Park YK, Kim JH, Yun DS, Bergman RG, Vollhardt KP. C. J. Korean Chem. Soc. 2004; 48: 327
    • 42a Bell TW, Brough SA, Partridge MG, Perutz RN, Rooney AD. Organometallics 1993; 12: 2933
    • 42b Bell TW, Haddleton DM, McCamley A, Partridge MG, Perutz RN, Willner H. J. Am. Chem. Soc. 1990; 112: 9212
    • 42c Haddleton DM, Perutz RN. J. Chem. Soc., Chem. Commun. 1986; 1734
  • 43 Dziallas M, Höhn A, Werner H. J. Organomet. Chem. 1987; 330: 207
  • 44 Curtis CJ, Haltiwanger RC. Organometallics 1991; 10: 3220

    • For related structural determinations, see:
    • 45a Bertini F, Calucci L, Cicogna F, Gaddi B, Ingrosso G, Marcaccio M, Marchetti F, Paolucci D, Paolucci F, Pinzino C. J. Organomet. Chem. 2006; 691: 2987
    • 45b Paisner SN, Lavoie GG, Bergman RG. Inorg. Chim. Acta 2002; 334: 253
  • 46 Column chromatography of a run with 1 equivalent of PPh3 presented a fraction containing a mixture exhibiting diagnostic42a signals for a (C5H4)Ir(CH=CH2)(H)(PPh3) unit and a mass spectrum consistent with the generation of FvIr(CH2=CH2)2Ir(CH=CH2)(H)(PPh3). With 3 equivalents of PPh3, the crude 1H NMR spectrum showed a hydride signal containing 14 lines (δ = –16.6 to –16.9).
  • 47 Partridge MG, McCamley A, Perutz RN. J. Chem. Soc., Dalton Trans. 1994; 3519
    • 48a Zhang S, Chu X, Li T, Wang Z, Zhu B. ACS Omega 2018; 3: 4522
    • 48b Tan X, Li B, Xu S, Song H, Wang B. Organometallics 2013; 32: 3253
    • 48c Esteruelas MA, Fernandez-Alvarez FJ, Lopez AM, Onate E, Ruiz-Sanchez P. Organometallics 2006; 25: 5131
    • 48d Jutzi P, Kristen MO, Neumann B, Stammler H.-G. Organometallics 1994; 13: 3854

      While the crystal structure of CpIr(PMe3)2(H)2 has not been determined, those of modified relatives are known, see:
    • 49a Reference 16a.
    • 49b Golden JT, Peterson TH, Holland PL, Bergman RG, Andersen RA. J. Am. Chem. Soc. 1998; 120: 223
    • 49c Husebo TL, Jensen CM. Organometallics 1995; 14: 1087
  • 50 Pedersen A, Tilset M. Organometallics 1994; 13: 4887
  • 51 Klei SR, Golden JT, Burger P, Bergman RG. J. Mol. Catal. A: Chem. 2002; 189: 79
    • 52a Hou Z, Nguyen SC, Lomont JP, Harris CB, Vinokurov N, Vollhardt KP. C. Phys. Chem. Chem. Phys. 2013; 15: 7466
    • 52b Harpham MR, Nguyen SC, Hou Z, Grossman JC, Harris CB, Mara MW, Stickrath AB, Kanai Y, Kolpak AM, Lee D, Liu D.-J, Lomont JP, Moth-Poulsen K, Vinokurov N, Chen LX, Vollhardt KP. C. Angew. Chem. Int. Ed. 2012; 51: 7692
    • 52c Zhu B, Miljanic OS, Vollhardt KP. C, West MJ. Synthesis 2005; 3373
    • 53a Bitterwolf TE, Gambaro A, Gottardi F, Valle G. Organometallics 1991; 10: 1416
    • 53b Abad JA. Inorg. Chim. Acta 1986; 121: 213
  • 54 For the decarbonylation of Cp (or Cp*) M(CO)2 complexes, see: Ceccon A, Ganis P, Imhoff M, Manoli F, Santi S, Venzo A. J. Organomet. Chem. 1999; 577: 167 ; and references cited therein
  • 55 Hughes RP, Lomprey JR. Inorg. Chim. Acta 1995; 240: 653
  • 56 Schoorl N, van den Berg LM. Pharm. Weekbl. 1906; 43: 2