Synlett 2019; 30(06): 703-708
DOI: 10.1055/s-0037-1611740
letter
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Allylic Amination of Morita–Baylis–Hillman Adducts with Simple Aromatic Amines by Nucleophilic Amine Catalysis

Shuai Zhao
,
Zhi-Li Chen
,
Xue Rui
,
Ming-Mei Gao
,
Xin Chen*
School of Pharmaceutical Engineering & Life Science, Changzhou University, Changzhou, 213164, P. R. of China   Email: xinchen@cczu.edu.cn
› Author Affiliations

We gratefully acknowledge the financial support from the National Science Foundation of China (21602018, 21272029) and the Jiangsu Overseas Visiting Scholar Program for University Prominent Young & Middle-Aged Teachers and Presidents.
Further Information

Publication History

Received: 14 January 2019

Accepted after revision: 04 February 2019

Publication Date:
26 February 2019 (online)


Abstract

Asymmetric allylic amination of Morita–Baylis–Hillman (MBH) adducts with simple aromatic amines is successfully realized by nucleophilic amine catalysis. A range of substituted α-methylene-β-arylamino esters is accessed in moderate to high yields (up to 88%) and with excellent enantioselectivities (up to 97% ee). Inorganic fluorides are found to be able to improve the enantioselectivity of the allylic amination reaction. A pyrrole-2-carboxylate and a cyclic imide are also compatible with this catalytic system. A chiral 2,3-dihydroquinolin-4-one derivative is easily obtained from the allylic amination product.

Supporting Information

 
  • References and Notes

    • 1a Basavaiah D, Rao AJ, Satyanarayana T. Chem. Rev. 2003; 103: 811
    • 1b Sorbetti JM, Clary KN, Rankic DA, Wulff JE, Parvez M, Back TG. J. Org. Chem. 2007; 72: 3326
    • 1c Declerck V, Toupet L, Martinez J, Lamaty F. J. Org. Chem. 2009; 74: 2004
    • 1d Galeazzi R, Martelli G, Mobbili G, Orena M, Rinaldi S. Org. Lett. 2004; 6: 2571
    • 1e Nemoto T, Fukuyama T, Yamamoto E, Tamura S, Fukuda T, Matsumoto T, Akimoto Y, Hamada Y. Org. Lett. 2007; 9: 927
    • 1f Murru S, McGough B, Srivastava RS. Org. Biomol. Chem. 2014; 12: 9133
    • 1g Reddy RS, Lagishetti C, Kiran IN. C, You H, He Y. Org. Lett. 2016; 18: 3818
    • 1h Pathak R, Madapa S, Batra S. Tetrahedron 2007; 63: 451
    • 1i Gowrisankar S, Lee HS, Kim JM, Kim JN. Tetrahedron Lett. 2008; 49: 1670
    • 2a Wang X, Meng F, Wang Y, Han Z, Chen Y.-J, Liu L, Wang Z, Ding K. Angew. Chem. Int. Ed. 2012; 51: 9276
    • 2b Zhou P, Liang Y, Zhang H, Jiang H, Feng K, Xu P, Wang J, Wang X, Ding K, Luo C, Liu M, Wang Y. Eur. J. Med. Chem. 2018; 144: 817
    • 2c Liu J, Han Z, Wang X, Wang Z, Ding K. J. Am. Chem. Soc. 2015; 137: 15346
    • 2d Zhou P, Liu Y, Zhou L, Zhu K, Feng K, Zhang H, Liang Y, Jiang H, Luo C, Liu M, Wang Y. J. Med. Chem. 2016; 59: 10329
    • 2e Benfatti F, Cardillo G, Gentilucci L, Mosconi E, Tolomelli A. Org. Lett. 2008; 10: 2425
    • 3a Masson G, Housseman C, Zhu J. Angew. Chem. Int. Ed. 2007; 46: 4614
    • 3b Declerck V, Martinez J, Lamaty F. Chem. Rev. 2009; 109: 1
    • 3c Basavaiah D, Reddy BS, Badsara SS. Chem. Rev. 2010; 110: 5447
    • 4a Liu X, Chai Z, Zhao G, Zhu S. J. Fluorine Chem. 2005; 126: 1215
    • 4b Shi M, Ma G.-N, Gao J. J. Org. Chem. 2007; 72: 9779
    • 4c Liu X, Zhao J, Jin G, Zhao G, Zhua S, Wang S. Tetrahedron 2005; 61: 3841

      For some recent developments on catalytic transformation of MBH adducts, see:
    • 5a Jiang F, Luo G.-Z, Zhu Z.-Q, Wang C.-S, Mei G.-J, Shi F. J. Org. Chem. 2018; 83: 10060
    • 5b Cheng Y, Han Y, Li P. Org. Lett. 2017; 19: 4774
    • 5c Zhan G, Shi M.-L, He Q, Lin W.-J, Ouyang Q, Du W, Chen Y.-C. Angew. Chem. Int. Ed. 2016; 55: 2147
    • 6a Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
    • 6b Lu Z, Ma S. Angew. Chem. Int. Ed. 2008; 47: 258
    • 6c Wang Y, Zhang T, Liu L, Wang D, Chen Y. Chin. J. Chem. 2012; 30: 2641
    • 6d Wang X, Guo P, Han Z, Wang X, Wang Z, Ding K. J. Am. Chem. Soc. 2014; 136: 405
    • 6e Rajesh S, Banerji B, Iqbal J. J. Org. Chem. 2002; 67: 7852
    • 6f Wang Y, Liu L, Wang D, Chen Y.-J. Org. Biomol. Chem. 2012; 10: 6908
    • 6g Mei G.-J, Li D, Zhou G.-X, Shi Q, Cao Z, Shi F. Chem. Commun. 2017; 53: 10030
    • 6h Lu Y.-N, Lan J.-P, Mao Y.-J, Wang Y.-X, Mei G.-J, Shi F. Chem. Commun. 2018; 54: 18527
    • 6i Li M.-M, Wei Y, Liu J, Chen H.-W, Lu L.-Q, Xiao W.-J. J. Am. Chem. Soc. 2017; 139: 14707
    • 6j Wang Y.-N, Wang B.-C, Zhang M.-M, Gao X.-W, Li T.-R, Lu L.-Q, Xiao W.-J. Org. Lett. 2017; 19: 4094
    • 6k Mei G.-J, Bian C.-Y, Li G.-H, Xu S.-L, Zheng W.-Q, Shi F. Org. Lett. 2017; 19: 3219
    • 7a Rios R. Catal. Sci. Technol. 2012; 2: 267
    • 7b Liu T.-Y, Xie M, Chen Y.-C. Chem. Soc. Rev. 2012; 41: 4101
    • 7c Wei Y, Shi M. Chem. Rev. 2013; 113: 6659
    • 7d Cui H.-L, Feng X, Peng J, Lei J, Jiang K, Chen Y.-C. Angew. Chem. Int. Ed. 2009; 48: 5737
    • 7e Zhang H, Zhang S.-J, Zhou Q.-Q, Dong L, Chen Y.-C. Beilstein J. Org. Chem. 2012; 8: 1241
    • 7f Huang J.-R, Cui H.-L, Lei J, Sun X.-H, Chen Y.-C. Chem. Commun. 2011; 47: 4784
    • 7g Lu H, Lin J.-B, Liu J.-Y, Xu P.-F. Chem. Eur. J. 2014; 20: 11659
    • 7h Lin A, Mao H, Zhu X, Ge H, Tan R, Zhu C, Cheng Y. Chem. Eur. J. 2011; 17: 13676
    • 7i Zhang S.-J, Cui H.-L, Jiang K, Li R, Ding Z.-Y, Chen Y.-C. Eur. J. Org. Chem. 2009; 5804
    • 7j Pei C.-K, Zhang X.-C, Shi M. Eur. J. Org. Chem. 2011; 4479
    • 7k Zhao M.-X, Chen M.-X, Tang W.-H, Wei D.-K, Dai T.-L, Shi M. Eur. J. Org. Chem. 2012; 3598
    • 7l Sun W, Ma X, Hong L, Wang R. J. Org. Chem. 2011; 76: 7826
    • 7m Huang L, Wei Y, Shi M. Org. Biomol. Chem. 2012; 10: 1396
    • 7n Cho C.-W, Kong J.-R, Krische MJ. Org. Lett. 2004; 6: 1337
    • 7o Pellissier H. Tetrahedron 2017; 73: 2831
    • 7p Zhang T.-Z, Dai L.-X, Hou X.-L. Tetrahedron: Asymmetry. 2007; 18: 1990
    • 8a Lee CG, Lee KY, Lee S, Kim JN. Tetrahedron 2005; 61: 1493
    • 8b Bakthadoss M, Srinivasan J, Selvakumar R. Aust. J. Chem. 2014; 67: 295
    • 8c Ge S.-Q, Hua Y.-Y, Xia M. Synth. Commun. 2010; 40: 1954
    • 8d Ge S.-Q, Hua Y.-Y, Xia M. Ultrason. Sonochem. 2009; 16: 743
    • 9a Zhao S, Lin J.-B, Zhao Y.-Y, Liang Y.-M, Xu P.-F. Org. Lett. 2014; 16: 1802
    • 9b Zhao S, Zhao Y.-Y, Lin J.-B, Xie T, Liang Y.-M, Xu P.-F. Org. Lett. 2015; 17: 3206
    • 10a Su W, Raders S, Verkade JG, Liao X, Hartwig JF. Angew. Chem. Int. Ed. 2006; 45: 5852
    • 10b Bugarin A, Connell BT. Chem. Commun. 2010; 46: 2644
    • 10c Zhu B, Yan L, Pan Y, Lee R, Liu H, Han Z, Huang K.-W, Tan C.-H, Jiang Z. J. Org. Chem. 2011; 76: 6894
  • 11 Asymmetric Allylic Amination; General ProcedureA solution of amine 2 (0.05 mmol), MBH carbonate 3 (0.1 mmol), catalyst 1k (0.01 mmol) and CaF2 (0.25 mmol) in p-xylene (0.5 mL) was stirred at room temperature for 72 hours. Then the reaction mixture was directly purified by flash column chromatography (eluting with EtOAc/petroleum ether, 10:1) to afford the product 4.Methyl (R)-2-[Phenyl(phenylamino)methyl]acrylate (4aa) Colorless oil; 80% yield; 92% ee; [α]D 28 = –91.1 (c 0.7, CHCl3). The enantiomeric excess was determined by HPLC analysis with an OD-H column (n-hexane/i-PrOH, 95:5), 1.0 mL/min, λ = 254 nm, t R (major) = 8.57 min, t R (minor) = 10.76 min. 1H NMR (300 MHz, CDCl3): δ = 7.40–7.28 (m, 5 H), 7.20–7.14 (m, 2 H), 6.75–6.70 (m, 1 H), 6.58 (dd, J = 8.4 Hz, J = 0.9 Hz, 2 H), 6.40 (s, 1 H), 5.97 (t, J = 1.2 Hz, 1 H), 5.41 (s, 1 H), 4.16 (s, 1 H), 3.71 (s, 3 H); 13C NMR (100 MHz, CDCl3): δ = 166.8, 146.8, 140.7, 140.0, 129.3, 128.9, 128.0, 127.7, 126.4, 118.0, 113.5, 59.1, 52.1; HRMS (ESI): m/z [M + H]+ calcd for C17H18NO2: 268.1332; found: 268.1333.
    • 12a Wu G, Wong Y, Chen X, Ding Z. J. Org. Chem. 1999; 64: 3714
    • 12b Sasikala CH. V. A, Padi PR, Sunkara V, Ramayya P, Dubey PK, Uppala VB. R, Praveen C. Org. Process Res. Dev. 2009; 13: 907
    • 13a Kim JN, Lee HJ, Gong JH. Tetrahedron Lett. 2002; 43: 9141
    • 13b Baidya M, Remennikov GY, Mayer P, Mayr H. Chem. Eur. J. 2010; 16: 1365