Synlett 2019; 30(09): 1077-1084
DOI: 10.1055/s-0037-1611810
letter
© Georg Thieme Verlag Stuttgart · New York

Brønsted Acids of Anionic Chiral Cobalt(III) Complexes as Catalysts for the Iodoglycosylation or Iodocarboxylation of Glycals

Rui Wang
a   Department of Applied Chemistry, Anhui Agricultural University, Hefei, 230036, P. R. of China   Email: jieyu@ahau.edu.cn
,
Wen-Qiang Wu
a   Department of Applied Chemistry, Anhui Agricultural University, Hefei, 230036, P. R. of China   Email: jieyu@ahau.edu.cn
,
Na Li
a   Department of Applied Chemistry, Anhui Agricultural University, Hefei, 230036, P. R. of China   Email: jieyu@ahau.edu.cn
,
Jia Shen
b   Tobacco Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, P. R. of China
,
Kun Liu
a   Department of Applied Chemistry, Anhui Agricultural University, Hefei, 230036, P. R. of China   Email: jieyu@ahau.edu.cn
,
Jie Yu  *
a   Department of Applied Chemistry, Anhui Agricultural University, Hefei, 230036, P. R. of China   Email: jieyu@ahau.edu.cn
› Author Affiliations
We are grateful for financial support from NSFC (Grants 21672002), Anhui Provincial Natural Science Foundation (1908085J07), Young Talent Program in Anhui Provincal University (gxyqZD2017017), Opening Project of State Key Laboratory of Tea Plant Biology and Utilization (SKLTOF20150108) and the Key Project of Anhui Tabaco Company (20160551015).
Further Information

Publication History

Received: 08 February 2019

Accepted after revision: 03 April 2019

Publication Date:
23 April 2019 (online)


These authors contributed equally to this work.

Abstract

Brønsted acids of anionic chiral Co(III) complexes were found to act as efficient phase-transfer catalysts for the diastereoselective iodoglycosylation or iodocarboxylation of glycals with a variety of alcohols or carboxylic acids, respectively, with N-iodosuccinimide as the iodo cation source. The corresponding 2-deoxy-2-iodoglycosides, including monosaccharides and disaccharides, and 2-deoxy-2-iodoglycosyl carboxylates, which are of high synthetic and biological importance, were obtained in high yields (up to 88%) with good diastereoselectivities (up to 9:1 dr).

Supporting Information

 
  • References and Notes

    • 1a Varki A. Glycobiology 1993; 3: 97
    • 1b Carbohydrates in Chemistry and Biology, Vols. 1–4. Ernst B, Hart GW, Sinaÿ P. Wiley-VCH; Weinheim: 2000
    • 1c Glycoscience, Chemistry and Chemical Biology, Vols. 1–3. Fraser-Reid BO, Tatsuta K, Thiem J. Springer; Berlin: 2001
    • 1d Bertozzi CR, Kiessling LL. Science 2001; 291: 2357
    • 2a Deoxy Sugars . Gould RF. ACS; Washington: 1968
    • 2b Kirschning A, Bechthold AF.-W, Rohr J. Top. Curr. Chem. 1997; 188: 1
    • 2c Weymouth-Wilson AC. Nat. Prod. Rep. 1997; 14: 99
    • 2d Kren V, Martínková L. Curr. Med. Chem. 2001; 8: 1303
    • 2e De Lederkremer RM, Marino C. Adv. Carbohydr. Chem. Biochem. 2008; 61: 143
    • 2f Hou D, Lowary TL. Carbohydr. Res. 2009; 344: 1911
    • 3a Demchenko AV. In Handbook of Chemical Glycosylation: Advances in Stereoselectivity and Therapeutic Relevance. Demchenko AV. Wiley-VCH; Weinheim: 2008. 1

    • For some reviews on the methods for the synthesis of 2-deoxyglycosides, see:
    • 3b Thiem J, Klaffke W. Top. Curr. Chem. 1990; 154: 285
    • 3c Marzabadi CH, Franck RW. Tetrahedron 2000; 56: 8385
    • 3d Borovika A, Nagorny P. J. Carbohydr. Chem. 2012; 31: 255
    • 3e Zeng J, Xu Y, Wang H, Meng L, Wan Q. Sci. China: Chem. 2017; 60: 1162
    • 3f Bennett CS, Galan MC. Chem. Rev. 2018; 118: 7931

      For recent reviews, see:
    • 4a Li X, Zhu J. Eur. J. Org. Chem. 2016; 2016: 4724 ; and references cited therein
    • 4b Williams R, Galan MC. Eur. J. Org. Chem. 2017; 2017: 6247 ; and references cited therein

    • For selected examples of glycosylations controlled by chiral Brønsted acids, see:
    • 4c Cox DJ, Smith MD, Fairbanks AJ. Org. Lett. 2010; 12: 1452
    • 4d Balmond EI, Coe DM, Galan MC, McGarrigle EM. Angew. Chem. Int. Ed. 2012; 51: 9152
    • 4e Kimura T, Sekine M, Takahashi D, Toshima K. Angew. Chem. Int. Ed. 2013; 52: 12131
    • 4f Gould ND, Allen CL, Nam BC, Schepartz A, Miller SJ. Carbohydr. Res. 2013; 382: 36
    • 4g Balmond EI, Benito-Alifonso D, Coe DM, Alder RW, McGarrigle EM, Galan MC. Angew. Chem. Int. Ed. 2014; 53: 8190
    • 4h Liu D, Sarrafpour S, Guo W, Goulart B, Bennett CS. J. Carbohydr. Chem. 2014; 33: 423
    • 4i Kuroda Y, Harada S, Oonishi A, Kiyama H, Yamaoka Y, Yamada K.-i, Takasu K. Angew. Chem. Int. Ed. 2016; 55: 13137
    • 4j Park Y, Harper KC, Kuhl N, Kwan EE, Liu RY, Jacobsen EN. Science 2017; 355: 162
    • 5a Friesen RW, Danishefsky SJ. J. Am. Chem. Soc. 1989; 111: 6656
    • 5b Suzuki K, Sulikowski GA, Friesen RW, Danishefsky SJ. J. Am. Chem. Soc. 1990; 112: 8895
    • 5c Sebesta DP, Roush WR. J. Org. Chem. 1992; 57: 4799
    • 5d Tanaka H, Takahashi D, Takahashi T. Angew. Chem. Int. Ed. 2006; 45: 770
    • 5e Perret P, Slimani L, Briat A, Villemain D, Halimi S, Demongeot J, Fagret D, Ghezzi C. Eur. J. Nucl. Med. Mol. Imaging 2007; 34: 734
    • 5f Wang H, Tao J, Cai X, Chen W, Zhao Y, Xu Y, Yao W, Zheng J, Wan Q. Chem. Eur. J. 2014; 20: 17319
    • 5g Pradhan TK, Lin CC, Mong K.-KT. Org. Lett. 2014; 16: 1474
    • 6a Thiem J, Karl H, Schwentner J. Synthesis 1978; 696
    • 6b Gammon DW, Kinfe HH, De Vos DE, Jacobs PA, Sels BF. Tetrahedron Lett. 2004; 45: 9533
    • 6c Roush WR, Narayan S, Bennett CE, Briner K. Org. Lett. 1999; 1: 895
    • 6d Saeeng R, Sirion U, Sirichan Y, Trakulsujaritchok T, Sahakitpichan P. Heterocycles 2010; 81: 2569
    • 6e Sirion U, Purintawarrakun S, Sahakitpicchan P, Saeeng R. Carbohydr. Res. 2010; 345: 2401
    • 6f Reddy TR, Rao DS, Babachary K, Kashyap S. Eur. J. Org. Chem. 2016; 2016: 291
    • 6g Yuan W, Liu Y, Li C. Synlett 2017; 28: 1975
    • 6h Kimura T, Takahashi D, Toshima K. J. Org. Chem. 2015; 80: 9552

    • A similar reaction using 3,4-O -isopropylidene-6-O-(tert -butyldiphenyl)silyl-protected glycosyl donors that favor the β-anomer was recently reported, see:
    • 6i Yang D.-M, Chen Y, Sweeney RP, Lowary TL, Liang X.-Y. Org. Lett. 2018; 20: 2287

      For leading reviews on asymmetric intermolecular halogenation, see:
    • 7a Chen J, Zhou L. Synthesis 2014; 46: 586 ; and references cited therein
    • 7b Cheng YA, Yu WZ, Yeung Y.-Y. Org. Biomol. Chem. 2014; 12: 2333

      For recent examples of asymmetric intermolecular halogenations, see:
    • 8a Li L, Su C, Liu X, Tian H, Shi Y. Org. Lett. 2014; 16: 3728
    • 8b Qi J, Fan G.-T, Chen J, Sun M.-H, Dong Y.-T, Zhou L. Chem. Commun. 2014; 50: 13841
    • 8c Hu DX, Seidl FJ, Bucher C, Burns NZ. J. Am. Chem. Soc. 2015; 137: 3795
    • 8d Soltanzadeh B, Jaganathan A, Staples RJ, Borhan B. Angew. Chem. Int. Ed. 2015; 54: 9517
    • 8e Denmark SE, Carson N. Org. Lett. 2015; 17: 5728
    • 8f Landry ML, Hu DX, McKenna GM, Burns NZ. J. Am. Chem. Soc. 2016; 138: 5150
    • 8g Zhou P, Cai Y, Zhong X, Luo W, Kang T, Li J, Liu X, Lin L, Feng X. ACS Catal. 2016; 6: 7778
    • 8h Wang Z, Lin L, Zhou P, Liu X, Feng X. Chem. Commun. 2017; 53: 3462
    • 8i Zhou P, Lin L, Chen L, Zhong X, Liu X, Feng X. J. Am. Chem. Soc. 2017; 139: 13414
    • 8j Burckle AJ, Gál B, Seidl FJ, Vasilev VH, Burns NZ. J. Am. Chem. Soc. 2017; 139: 13562
    • 8k Guo S, Cong F, Guo R, Wang L, Tang P. Nat. Chem. 2017; 9: 546
    • 8l Horibe T, Tsuji Y, Ishihara K. ACS Catal. 2018; 8: 6362

      For selected reviews, see:
    • 9a Toshima K, Tatsuta K. Chem. Rev. 1993; 93: 1503
    • 9b Seeberger PH, Werz DB. Nature 2007; 446: 1046
    • 9c Boltje TJ, Buskas T, Boons G.-J. Nat. Chem. 2009; 1: 611
    • 9d Zhu X, Schmidt RR. Angew. Chem. Int. Ed. 2009; 48: 1900
    • 9e Yu B, Sun J, Yang X. Acc. Chem. Res. 2012; 45: 1227
    • 9f Ranade SC, Demchenko AV. J. Carbohydr. Chem. 2013; 32: 1
    • 9g Nigudkar SS, Demchenko AV. Chem. Sci. 2015; 6: 2687
    • 9h Yang Y, Zhang XH, Yu B. Nat. Prod. Rep. 2015; 32: 1331

      For reviews on chiral-at-metal complexes in catalysis, see:
    • 10a Brunner H. Angew. Chem. Int. Ed. 1999; 38: 1194
    • 10b Knight PD, Scott P. Coord. Chem. Rev. 2003; 242: 125
    • 10c Fontecave M, Hamelin O, Ménage S. Top. Organomet. Chem. 2005; 15: 271
    • 10d Bauer EB. Chem. Soc. Rev. 2012; 41: 3153
    • 10e Gong L, Chen L.-A, Meggers E. Angew. Chem. Int. Ed. 2014; 53: 10868
    • 10f Cao Z.-Y, Brittain WD. G, Fossey JS, Zhou F. Catal. Sci. Technol. 2015; 5: 3441
    • 11a Yu J, Jiang H.-J, Zhou Y, Luo S.-W, Gong L.-Z. Angew. Chem. Int. Ed. 2015; 54: 11209
    • 11b Jiang H.-J, Liu K, Wang J, Li N, Yu J. Org. Biomol. Chem. 2017; 15: 9077
    • 11c Jiang H.-J, Liu K, Yu J, Zhang L, Gong L.-Z. Angew. Chem. Int. Ed. 2017; 56: 11931
    • 11d Liu K, Jiang H.-J, Li N, Li H, Wang J, Zhang Z.-Z, Yu J. J. Org. Chem. 2018; 83: 6815
    • 11e Li N, Yu H, Wang R, Shen J, Wu W.-Q, Liu K, Sun T.-T, Zhang Z.-Z, Yao C.-Z, Yu J. Tetrahedron Lett. 2018; 59: 3605
    • 11f Jiang H.-J, Zhong X.-M, Yu J, Zhang Y, Zhang X, Wu Y.-D, Gong L.-Z. Angew. Chem. Int. Ed. 2019; 58: 1803

      For selected reviews on catalysis by chiral anions, see:
    • 12a Lacour J, Hebbe-Viton V. Chem. Soc. Rev. 2003; 32: 373
    • 12b Lacour J, Moraleda D. Chem. Commun. 2009; 7073
    • 12c Zhang Z, Schreiner PR. Chem. Soc. Rev. 2009; 38: 1187
    • 12d Wenzel M, Hiscock JR, Gale PA. Chem. Soc. Rev. 2012; 41: 480
    • 12e Phipps RJ, Hamilton GL, Toste FD. Nat. Chem. 2012; 4: 603
    • 12f Mahlau M, List B. Angew. Chem. Int. Ed. 2013; 52: 518
    • 12g Brak K, Jacobsen EN. Angew. Chem. Int. Ed. 2013; 52: 534

    • For selected examples, see:
    • 12h Hamilton GL, Kanai T, Toste FD. J. Am. Chem. Soc. 2008; 130: 14984
    • 12i Mayer S, List B. Angew. Chem. Int. Ed. 2006; 45: 4193
    • 12j Hamilton GL, Kang EJ, Mba M, Toste FD. Science 2007; 317: 496
    • 12k Sigman MS, Jacobsen EN. J. Am. Chem. Soc. 1998; 120: 4901
    • 12l Sigman MS, Vachal P, Jacobsen EN. Angew. Chem. Int. Ed. 2000; 39: 1279
    • 12m Llewellyn DB, Adamson D, Arndtsen BA. Org. Lett. 2000; 2: 4165
    • 12n Carter C, Fletcher S, Nelson A. Tetrahedron: Asymmetry 2003; 14: 1995

      For some reviews, see:
    • 13a Lemieux RU, Levine S. Can. J. Chem. 1964; 42: 1473
    • 13b De Castro M, Marzabadi CH. Tetrahedron 2010; 66: 3395

    • For selected examples of syntheses of 2-deoxy-2-iodoglycosides, see:
    • 13c Rodríguez M. Á, Boutureira O, Arnés X, Matheu MI, Díaz Y, Castillón S. J. Org. Chem. 2005; 70: 10297
    • 13d Kövér A, Boutureira O, Matheu MI, Díaz Y, Castillón S. J. Org. Chem. 2014; 79: 3060
    • 13e Battina SK, Kashyap S. Tetrahedron Lett. 2016; 57: 811

      For a review, see:
    • 14a Danishefsky SJ, Bilodeau MT. Angew. Chem. Int. Ed. 1996; 35: 1380

    • For recent examples of syntheses of deoxyglycosides from glycals, see:
    • 14b Sau A, Williams R, Palo-Nieto C, Franconetti A, Medina S, Galan MC. Angew. Chem. Int. Ed. 2017; 56: 3640
    • 14c Palo-Nieto C, Sau A, Galan MC. J. Am. Chem. Soc. 2017; 139: 14041
    • 14d Sau A, Galan MC. Org. Lett. 2017; 19: 2857
    • 14e Palo-Nieto C, Sau A, Williams R, Galan MC. J. Org. Chem. 2017; 82: 407
    • 14f Zhao G, Wang T. Angew. Chem. Int. Ed. 2018; 57: 6120
  • 15 2-Deoxy-2-Iodoglycoside 4aa; Typical Procedure A 10-mL oven-dried vial was charged with catalyst Λ-1c (7.2 mg, 0.01 mmol), NIS (24.8 mg, 0.11 mmol), activated 4 Å MS (100 mg), glycal 2a (41.6 mg, 0.10 mmol), and distilled CH2Cl2 (1 mL) at r.t. in the absence of light. Alcohol 3a (0.12 mmol) was added and the resulting solution was stirred vigorously under N2 for 24 h. The reaction was then quenched with Et3N (140 μL, 1.0 mmol) and sat. aq Na2S2O3 (0.2 mL). The mixture was purified by flash column chromatography to give the 2-deoxy-2-iodoglycosides 4aa as an α/β mixture. 4aaα Colorless oil; yield: 43.9 mg (67%); Rf = 0.43 (PE–EtOAc, 10:1); [α]D 20 +3.45 (c 1.27, CHCl3). 1H NMR (600 MHz, CDCl3): δ = 7.48–7.35 (m, 4 H), 7.35–7.19 (m, 14 H), 7.16 (d, J = 6.2 Hz, 2 H), 5.30 (s, 1 H), 4.84 (d, J = 10.8 Hz, 1 H), 4.72–4.66 (m, 3 H), 4.52–4.46 (m, 5 H), 3.92–3.91 (m, 2 H), 3.80–3.75 (m, 1 H), 3.69 (d, J = 10.8 Hz, 1 H), 3.37–3.34 (m, 1 H). 13C NMR (151 MHz, CDCl3): δ = 138.46, 138.29, 137.80, 136.98, 128.51, 128.44, 128.35, 128.10, 128.08, 128.05, 127.82, 127.69, 127.52, 100.85, 100.80, 76.05, 75.31, 73.47, 72.51, 71.04, 69.54, 69.00, 33.58, 33.55. HRMS (ESI): m/z [M + Na]+ calcd for C34H35NaIO5: 673.1427; found: 673.1420. 4aaβ White solid; yield: 9.5 mg (15%); mp 101–103 °C; Rf = 0.38 (PE–EtOAc, 10:1); [α]D 20 +4.91 (c 0.55, CHCl3). 1H NMR (600 MHz, CDCl3): δ = 7.47–7.36 (m, 4 H), 7.36–7.26 (m, 14 H), 7.19 (d, J = 6.9 Hz, 2 H), 4.97 (d, J = 10.2 Hz, 1 H), 4.92 (d, J = 11.7 Hz, 1 H), 4.85 (d, J = 10.1 Hz, 1 H), 4.80 (d, J = 10.9 Hz, 1 H), 4.68 (d, J = 11.8 Hz, 1 H), 4.62 (t, J = 9.6 Hz, 2 H), 4.57 (t, J = 12.5 Hz, 2 H), 4.01–3.94 (m, 1 H), 3.77–3.70 (m, 3 H), 3.64 (t, J = 9.2 Hz, 1 H), 3.49 (d, J = 7.6 Hz, 1 H). 13C NMR (151 MHz, CDCl3): δ = 138.17, 137.90, 137.85, 136.88, 128.55, 128.48, 128.42, 128.33, 128.18, 127.98, 127.89, 127.83, 127.76, 101.98, 86.01, 79.79, 75.62, 75.42, 75.03, 73.65, 71.39, 68.72, 32.68. HRMS (ESI): m/z [M + Na]+ calcd for C34H35NaIO5: 673.1427; found: 673.1422. (see Supporting Information for further information).
  • 16 Iodoglycosylations of either glucal (2b) or galactal (2d) with alcohol 3c in the absence of the chiral-CoIII-complex-templated Brønsted acid were also tested, affording the desired 2-deoxy-2-iodoglycosides in yields of 52% and 24% with 2.5:1 and 1.8:1 dr, respectively.
  • 17 2-Deoxy-2-Iodoglycosyl Carboxylate 6a; Typical Procedure A 10-mL oven-dried vial was charged with catalyst Λ-1c (7.2 mg, 0.01 mmol), NIS (27.0 mg, 0.12 mmol), activated 4 Å MS (100 mg), glycal 2a (41.6 mg, 0.10 mmol), and distilled CH2Cl2 (1 mL) at r.t. in the absence of light. BzOH (5a; 0.15 mmol) was added and the resulting solution was stirred vigorously under N2 for 12 h. The reaction was then quenched with Et3N (140 μL, 1.0 mmol) and sat. aq Na2S2O3 (0.2 mL). The mixture was purified by flash column chromatography to give the glycosyl carboxylate 6a as a α/β mixture. 6aα Colorless oil; yield: 42.7 mg (64%); Rf = 0.4 (PE–EtOAc, 8:1); [α]D 20 +3.78 (c 0.82, CHCl3). 1H NMR (600 MHz, CDCl3): δ = 7.93 (d, J = 7.0 Hz, 2 H), 7.59 (t, J = 7.4 Hz, 1 H), 7.43 (t, J = 7.8 Hz, 2 H), 7.41–7.35 (m, 4 H), 7.34–7.24 (m, 9 H), 7.22–7.16 (m, 2 H), 6.66 (s, 1 H), 4.90 (d, J = 10.5 Hz, 1 H), 4.76–4.72 (m, 2 H), 4.58–4.52 (m, 4 H), 4.13–4.09 (m, 1 H), 4.07–4.03 (m, 1 H), 3.83 (dd, J = 11.3, 4.0 Hz, 1 H), 3.71 (dd, J = 11.3, 1.6 Hz, 1 H), 3.33 (dd, J = 8.7, 4.1 Hz, 1 H). 13C NMR (151 MHz, CDCl3): δ = 164.07, 138.37, 138.08, 137.26, 133.75, 129.92, 129.12, 128.62, 128.57, 128.49, 128.38, 128.34, 128.32, 128.11, 127.94, 127.81, 127.59, 96.17, 76.20, 75.63, 75.31, 73.67, 71.22, 68.65, 31.20. HRMS (ESI): m/z [M+Na]+ calcd for C34H33INaO6: 687.1220; found: 687.1215. 6aβ Colorless oil; yield: 6.5 mg (10%); Rf = 0.4 (PE–EtOAc, 8:1); [α]D 20 +65.61 (c 0.22, CHCl3). 1H NMR (600 MHz, CDCl3): δ = 8.11 (d, J = 7.7 Hz, 2 H), 7.60 (t, J = 7.3 Hz, 1 H), 7.47 (t, J = 7.7 Hz, 2 H), 7.43 (d, J = 7.4 Hz, 2 H), 7.36 (t, J = 7.3 Hz, 2 H), 7.34–7.23 (m, 9 H), 7.17 (d, J = 7.4 Hz, 2 H), 6.05 (d, J = 9.5 Hz, 1 H), 5.00 (d, J = 10.2 Hz, 1 H), 4.91 (d, J = 10.2 Hz, 1 H), 4.82 (d, J = 10.8 Hz, 1 H), 4.60 (dd, J = 15.7, 11.5 Hz, 2 H), 4.48 (d, J = 12.1 Hz, 1 H), 4.19 (t, J = 9.8 Hz, 1 H), 3.87–3.69 (m, 5 H). 13C NMR (151 MHz, CDCl3): δ = 164.67, 137.76, 133.75, 130.34, 128.56, 128.51, 128.45, 128.16, 128.01, 127.98, 127.86, 127.80, 95.09, 85.65, 79.07, 76.17, 75.76, 75.10, 73.71, 68.02, 30.23. HRMS (ESI): m/z [M+Na]+ calcd for C34H33INaO6: 687.1220; found: 687.1217. (See Supporting Information for further information).