Synlett 2019; 30(02): 199-202
DOI: 10.1055/s-0037-1611941
letter
© Georg Thieme Verlag Stuttgart · New York

New Synthetic Methodology Toward Azaspiro-γ-Lactones by Oxidative C–H Spirocyclization

a   Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan   Email: yoda.hidemi@shizuoka.ac.jp
,
Yuichiro Nagai
a   Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan   Email: yoda.hidemi@shizuoka.ac.jp
,
Toshiyasu Inuzuka
b   Division of Instrumental Analysis, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
,
a   Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Japan   Email: yoda.hidemi@shizuoka.ac.jp
› Author Affiliations
This work was supported financially in part by JSPS Kakenhi Grant number JP15K21046 from the Ministry of Education, Culture, Sports, Science and Technology, Japan.
Further Information

Publication History

Received: 06 November 2018

Accepted after revision: 03 December 2018

Publication Date:
17 December 2018 (online)


Abstract

A new synthetic methodology for azaspiro-γ-lactones is reported. The key C–H spirolactonization was accomplished by employing iodobenzene diacetate and potassium bromide to afford a variety of azaspiro-γ-lactones in high yields. The reaction was also applicable to the preparation of a bislactone derivative.

Supporting Information

 
  • References and Notes

  • 2 Zhang ZJ, Nian Y, Zhu QF, Li XN, Su J, Wu X-D, Yang J, Zhao Q.-S. Org. Lett. 2017; 19: 4668
  • 3 Yixizhuoma, Ishikawa N, Abdelfattah MS, Ishibashi M. J. Antibiot. 2017; 70: 601
  • 4 Liu Q.-Y, Zhou T, Zhao Y.-Y, Chen L, Gong M.-W, Xia Q.-W, Ying M.-G, Zheng Q.-H, Zhang Q.-Q. Mar. Drugs 2015; 13: 4733
    • 5a Almond-Thynne J, Han J, White AJ. P, Polyzos A, Parsons PJ, Barrett AG. M. J. Org. Chem. 2018; 83: 6783
    • 5b Zhang C, Liu M, Ding M, Xie H, Zhang F. Org. Lett. 2017; 19: 3418
    • 5c Yahata K, Ye N, Ai Y, Iso K, Kishi Y. Angew. Chem. Int. Ed. 2017; 56: 10796
    • 5d Zeng C, Zhao J, Zhao G. Tetrahedron 2015; 71: 64
    • 5e Davy JA, Moreau B, Oliver AG, Wulff JE. Tetrahedron 2015; 71: 2643
    • 5f Miura Y, Hayashi N, Yokoshima S, Fukuyama T. J. Am. Chem. Soc. 2012; 134: 11995
    • 5g Nakajima M, Fuwa H, Sasaki M. Bull. Chem. Soc. Jpn. 2012; 85: 948
    • 5h Wang X, Han Z, Wang Z, Ding K. Angew. Chem. Int. Ed. 2012; 51: 936
    • 5i Massen ZS, Sarli VC, Coutouli-Argyropoulou E, Gallos JK. Carbohydr. Res. 2011; 346: 230
    • 5j Robinson JE, Brimble MA. Chem. Commun. 2005; 1560
    • 5k Suenaga K, Araki K, Sengoku T, Uemura D. Org. Lett. 2001; 3: 527
    • 6a Sengoku T, Kamiya Y, Kawakami A, Takahashi M, Yoda H. Eur. J. Org. Chem. 2017; 6096
    • 6b Sengoku T, Murata Y, Aso Y, Kawakami A, Inuzuka T, Takahashi M, Yoda H. Org. Lett. 2015; 17: 5846
    • 7a Wang PC, Asbell WJ. US Patent 4968812 A, 19901106, 1990
    • 7b Wang PC. US Patent 4939251 A, 19900703, 1990

      For selected reviews on C–H functionalization, see:
    • 8a Qiu Y, Gao S. Nat. Prod. Rep. 2016; 33: 562
    • 8b Ottenbacher RV, Talsi EP, Bryliakov KP. Molecules 2016; 21: 1454
    • 8c Liu B, Shi B.-F. Tetrahedron Lett. 2015; 56: 15
    • 8d Sun C.-L, Li B.-J, Shi Z.-J. Chem. Rev. 2011; 111: 1293
    • 8e Che C.-M, Lo VK.-Y, Zhou C.-Y, Huang J.-S. Chem. Soc. Rev. 2011; 40: 1950
    • 8f Zhang S.-Y, Zhang F.-M, Tu Y.-Q. Chem. Soc. Rev. 2011; 40: 1937
    • 8g Lu H, Zhang XP. Chem. Soc. Rev. 2011; 40: 1899
    • 8h Zhou M, Crabtree RH. Chem. Soc. Rev. 2011; 40: 1875
    • 8i Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 8j Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242

      For selected examples of heterofunctionalization of C–H bonds in heterocyclic molecules, see:
    • 9a Singh MK, Akula HK, Satishkumar S, Stahl L, Lakshman MK. ACS Catal. 2016; 6: 1921
    • 9b Gong M, Huang J.-M. Chem. Eur. J. 2016; 22: 14293
    • 9c Li L, Yu Z, Shen Z. Adv. Synth. Catal. 2015; 357: 3495
    • 9d Yang Q, Choy PY, Fu WC, Fan B, Kwong FY. J. Org. Chem. 2015; 80: 11193
    • 9e Sun J, Wang Y, Pan Y. Org. Biomol. Chem. 2015; 13: 3878
    • 9f Durán-Peña MJ, Botubol-Ares JM, Hanson JR, Hernández-Galán R, Collado IG. Eur. J. Org. Chem. 2015; 6333
    • 9g Kamijo S, Tao K, Takao G, Murooka H, Murafuji T. Tetrahedron Lett. 2015; 56: 1904
    • 9h Barve BD, Wu Y.-C, El-Shazly M, Korinek M, Cheng Y.-B, Wang J.-J, Chang F.-R. Org. Lett. 2014; 16: 1912
    • 9i Priyadarshini S, Amal Joseph PJ, Lakshmi Kantam M. Tetrahedron 2014; 70: 6068
    • 9j Guo S, Yuan Y, Xiang J. Org. Lett. 2013; 15: 4654
    • 9k Wang M.-K, Zhou Z, Tang R.-Y, Zhang X.-G, Deng C. Synlett 2013; 24: 737
    • 9l Kumar GS, Pieber B, Reddy KR, Kappe CO. Chem. Eur. J. 2012; 18: 6124
    • 9m Mao X, Wu Y, Jiang X, Liu X, Cheng Y, Zhu C. RSC Adv. 2012; 2: 6733
    • 9n Lao Z.-Q, Zhong W.-H, Lou Q.-H, Li Z.-J, Meng X.-B. Org. Biomol. Chem. 2012; 10: 7869

      For selected reviews on spirocyclization, see:
    • 10a Singh FV, Kole PB, Mangaonkar SR, Shetgaonkar SE. Beilstein J. Org. Chem. 2018; 14: 1778
    • 10b Subba Reddy BV, Nair PN, Antony A, Srivastava N. Eur. J. Org. Chem. 2017; 5484
    • 10c Reddy CR, Prajapti SK, Warudikar K, Ranjan R, Rao BB. Org. Biomol. Chem. 2017; 15: 3130
    • 10d Quach R, Furkert DP, Brimble MA. Org. Biomol. Chem. 2017; 15: 3098
    • 10e Wagner B, Belger K, Minkler S, Belting V, Krause N. Pure Appl. Chem. 2016; 88: 391
    • 10f Favre S, Vogel P, Gerber-Lemaire S. Molecules 2008; 13: 2570
    • 10g Sinibaldi M, Canet I. Eur. J. Org. Chem. 2008; 4391
  • 11 He F, Bo Y, Alton JD, Corey EJ. J. Am. Chem. Soc. 1999; 121: 6771
  • 12 Bigi MA, Reed SA, White MC. J. Am. Chem. Soc. 2012; 134: 9721
  • 13 Lactam carboxylic acid 1a was readily prepared in five steps starting from commercially available N-methylphthalimide.
    • 14a Dohi T, Ueda S, Iwasaki K, Tsunoda Y, Morimoto K, Kita Y. Beilstein J. Org. Chem. 2018; 14: 1087
    • 14b Dohi T, Takenaga N, Goto A, Maruyama A, Kita Y. Org. Lett. 2007; 9: 3129

      When the reaction was performed under the classical C–H oxidation conditions (PIDA, I2, hν) developed by Suárez, only 13% of product was obtained along with 43% yield of recovered starting material and a substantial amount of an unidentified side product. For Suárez’s conditions, see:
    • 15a Hernández R, Rivera A, Salazar JA, Suárez E. J. Chem. Soc., Chem. Commun. 1980; 958
    • 15b Calvert MB, Sperry J. Tetrahedron Lett. 2012; 53: 5426
  • 16 In the absence of KBr, the use of 1.2 equivalents of PIDA at room temperature gave only a trace amount of the desired product.
  • 17 Li T, Xiang C, Zhang B, Yan J. Helv. Chim. Acta 2014; 97: 854
  • 18 General procedure for spirolactonization: To a solution of 1 (21.9 mg, 0.100 mmol) in CH2Cl2 (1.0 mL) was added iodobenzene diacetate (PIDA, 38.7 mg, 0.120 mmol) and potassium bromide (11.9 mg, 0.100 mmol) at room temperature under an argon atmosphere. After stirring the suspension for 24 h, the reaction was quenched by addition of saturated aqueous NaHCO3 (5 mL). The resulting mixture was extracted with EtOAc (5 mL × 3), washed with brine (5 mL), dried with Na2SO4, filtered, and concentrated in vacuo to give a crude material. This material was purified by column chromatography on silica gel by using hexane/EtOAc as the eluent.
  • 19 Compound 2a: White solid; mp 230–232 °C; IR (KBr): 1774 (C=O), 1702 (C=O) cm–1; 1H NMR (300 MHz, CDCl3): δ 7.83 (m, 1 H, ArH), 7.66–7.49 (m, 3 H, ArH), 3.05 (s, 3 H, CH 3), 3.04–2.98 (m, 2 H, CH 2), 2.77 (ddd, J = 7.5, 9.9, 14.1 Hz, 1 H, CH 2), 2.60 (ddd, J = 7.5, 8.7, 14.1 Hz, 1 H, CH 2); 13C NMR (75 MHz, CDCl3): δ 174.3 (C), 166.6 (C), 143.9 (C), 132.9 (CH), 130.7 (CH), 123.7 (CH), 121.4 (CH), 97.4 (C), 29.3 (CH2), 29.2 (CH2), 23.7 (CH3). Anal. Calcd for C12H11NO3: C, 66.35; H, 5.10; N, 6.45. Found: C, 66.12; H, 4.88; N, 6.24.
  • 20 The addition of 2,2,6,6-tetramethylpiperide 1-oxyl (TEMPO) or 2,6-di-tert-butyl-4-methylphenol (BHT) to the reaction mixture of 1a completely shut down the formation of 2a, indicating that these reactions should be a radical process. Hydrogen abstraction from the substrate would occur at the potentially reactive C–H bond adjacent to the nitrogen atom. In the case of 2d, hydrogen abstraction on the endocyclic carbon atom would be favored because the generated radical species could be much more stabilized by the conjugated system of isoindolinone the benzylic radical on the exocyclic position.