Synlett 2019; 30(05): 552-556
DOI: 10.1055/s-0037-1612108
letter
© Georg Thieme Verlag Stuttgart · New York

Aerobic Oxidative Coupling of Aniline Catalyzed by One-Dimensional Manganese Hydroxide Nanomaterials

Hui Miao  *
School of Chemistry and Materials Engineering, Fuyang Normal College, Anhui Provincial Key Laboratory for Degradation and Monitoring of Pollution of the Environment, Fuyang, 236037, P. R. of China   Email: huimiao@mail.ahnu.edu.com
,
Kelong Ma
,
Shiwei Hu
,
Ruiqian Li
,
Lin Sun
,
Yumin Cui
› Author Affiliations

This work was supported by the National Natural Science Foundation of China (21402029), the Natural Science Foundation of Higher Education Institutions in Anhui Province (KJ2018A0332, KJ2018A0340), the Natural Science Foundation of Anhui Province (1608085MB34), the FYNC and Government Cooperation Foundation (XDHX2016013), and the Students Research Training Program (201810371053, 201710371024, 201710371088).
Further Information

Publication History

Received: 06 December 2018

Accepted after revision: 11 January 2019

Publication Date:
18 February 2019 (online)


Abstract

The aerobic oxidative coupling of aniline is an effective process for producing aromatic azo compounds, which are widely used in the organic chemical industry. The development of heterogeneous catalysts for this reaction would be advantageous because of their recyclability and convenience in posttreatment. In this work, one-dimensional Mn(OH)2 nanostructure with various shapes were synthesized through the adjustment of various surfactants. The as-synthesized Mn(OH)2 nanobelts and nanowires showed superior catalytic activity in the activation of oxygen and aniline. Aromatic azo compounds with a variety of substituents were produced through the coupling of the corresponding anilines without additives under ambient conditions.

Supporting Information

 
  • References and Notes

  • 1 Anderson RG, Nickless G. Analyst 1967; 92: 207
  • 2 Ma H, Li W, Wang J, Xiao G, Gong Y, Qi C, Feng Y, Li X, Bao Z, Cao W, Sun Q, Veaceslav C, Wang F, Lei Z. Tetrahedron 2012; 68: 8358
  • 3 Merino E. Chem. Soc. Rev. 2011; 40: 3835
  • 4 Orito K, Hatakeyama T, Takeo M, Uchiito S, Tokuda M, Suginome H. Tetrahedron 1998; 54: 8403
  • 5 Baer E, Tosoni AL. J. Am. Chem. Soc. 1956; 78: 2857
  • 6 Pratt EF, McGovern TP. J. Org. Chem. 1964; 29: 1540
  • 7 Grirrane A, Corma A, García H. Science 2008; 322: 1661
  • 8 Zhang C, Jiao N. Angew. Chem. Int. Ed. 2010; 49: 6174
  • 9 Lu W, Xi C. Tetrahedron Lett. 2008; 49: 4011
  • 10 Hu L, Cao X, Chen L, Zheng J, Lu J, Sun X, Gu H. Chem. Commun. 2012; 48: 3445
  • 11 Cai S, Rong H, Yu X, Liu X, Wang D, He W, Li Y. ACS Catal. 2013; 3: 478
  • 12 Zhang K, Han X, Hu Z, Zhang X, Tao Z, Chen J. Chem. Soc. Rev. 2015; 44: 699
  • 13 Wang L, Wang D.-L. Electrochim. Acta 2011; 56: 5010
  • 14 Wang M, Ma J, Yu M, Zhang Z, Wang F. Catal. Sci. Technol. 2016; 6: 1940
  • 15 Tang Q, Gong X, Wu C, Chen Y, Borgna A, Yang Y. Catal. Commun. 2009; 10: 1122
  • 16 Yan D, Li Y, Liu Y, Zhuo R, Wu Z, Geng B, Wang J, Ren P, Yan P, Geng Z. Mater. Lett. 2014; 136: 7
  • 17 Sun W, Hsu A, Chen R. J. Power Sources 2011; 196: 627
  • 18 Fang H, Zhang S, Wu X, Liu W, Wen B, Du Z, Jiang T. J. Power Sources 2013; 235: 95
  • 19 Lei S, Tang K, Fang Z, Zheng H. Cryst. Growth Des. 2006; 6: 1757
  • 20 Seo WS, Jo HH, Lee K, Kim B, Oh SJ, Park JT. Angew. Chem. Int. Ed. 2004; 43: 1115
  • 21 Shen YF, Zerger RP, DeGuzman RN, Suib SL, McCurdy L, Potter DI, O’Young CL. Science 1993; 260: 511
  • 22 Yang Z, Gong J, Tang C, Zhu W, Cheng Z, Jiang J, Ma A, Ding Q. J. Mater. Sci.: Mater. Electron. 2017; 28: 17533
  • 23 Zhu J, Tang S, Xie H, Dai Y, Meng X. ACS Appl. Mater. Interfaces 2014; 6: 17637
  • 24 Yan J, Wang Q, Wei T, Fan Z. Adv. Energy Mater. 2014; 4: 1300816
  • 25 Jiao F, Harrison A, Hill AH, Bruce PG. Adv. Mater. (Weinheim, Ger.) 2007; 19: 4063
  • 26 Zhang X, Meng X, Gong S, Li P, Jin L. e, Cao Q. Mater. Lett. 2016; 179: 73
  • 27 Yin B, Zhang S, Jiang H, Qu F, Wu X. J. Mater. Chem. A 2015; 3: 5722
  • 28 Langley D, Giusti G, Mayousse C, Celle C, Bellet D, Simonato J.-P. Nanotechnology 2013; 24: 452001
  • 29 Liu S, Tang Z.-R, Sun Y, Colmenares JC, Xu Y.-J. Chem. Soc. Rev. 2015; 44: 5053
  • 30 Rivière P, Nypelö TE, Obersriebnig M, Bock H, Müller M, Mundigler N, Wimmer R. J. Thermoplast. Compos. Mater. 2017; 30: 1615
  • 31 Hochbaum AI, Chen R, Diaz Delgado R, Liang W, Garnett EC, Najarian M, Majumdar A, Yang P. Nature 2008; 451: 163
  • 32 Xiao F.-X, Miao J, Tao HB, Hung S.-F, Wang H.-Y, Yang HB, Chen J, Chen R, Liu B. Small 2015; 11: 2115
  • 33 Ge M, Cao C, Huang J, Li S, Chen Z, Zhang K.-Q, Al-Deyab SS, Lai Y. J. Mater. Chem. A 2016; 4: 6772
  • 34 Chen Z, Wang S, Lian C, Liu Y, Wang D, Chen C, Peng Q, Li Y. Chem. Asian J. 2016; 11: 351
  • 35 Han F.-S. Chem. Soc. Rev. 2013; 42: 5270
  • 36 Dutta B, Biswas S, Sharma V, Savage NO, Alpay SP, Suib SL. Angew. Chem. Int. Ed. 2016; 55: 2171
  • 37 Mn(OH)2 Nanobelts; Typical Procedure Mn(acac)3 powder (100 mg) was added to a 10 mL autoclave containing oleylamine (9 mL) with agitation. The clear solution was sealed into the autoclave and hydrothermally treated at 180 °C for 18 h, then cooled to r.t. The product was washed with EtOH (3 × 25 mL) then dispersed in cyclohexane (10 mL).
  • 38 Azobenzene (1b); Typical Procedure A glass reactor was charged with aniline (1a; 0.5 mmol), Mn(OH2) nanobelts (50 mg), and p-xylene (50 mL) under O2 (1 bar), and the mixture was vigorously stirred at 140 °C for 16 h. The reaction system was then cooled to r.t., and the catalyst was separated from the mixture by centrifugation. The conversion was determined by GC. The supernatant was purified by flash chromatography on a short silica gel (eluent: petroluem ester) to give an orange solid; yield: 88%, 40 mg. 1H NMR (400 MHz, CDCl3, TMS): δ = 7.93–7.92 (d, 4 H), 7.54–7.46 (m, 6 H).13C NMR (100 MHz, CDCl3): δ = 152.66, 130.99, 129.09, 122.84.