Nuklearmedizin 2006; 45(06): 273-276
DOI: 10.1055/s-0038-1625109
Originalarbeiten – Original Articles
Schattauer GmbH

Molecular imaging and molecular guided Therapy

Molekulare Bildgebung und molekular geführte Therapie
H. Lerch
1   Klinik für Nuklearmedizin, HELIOS-Klinikum Wuppertal, Universität Witten-Herdecke
,
A. Jigalin
1   Klinik für Nuklearmedizin, HELIOS-Klinikum Wuppertal, Universität Witten-Herdecke
› Author Affiliations
Further Information

Publication History

Eingegangen: 07 August 2006

angenommen: 23 August 2006

Publication Date:
11 January 2018 (online)

Summary

Aim and method: Scientific publications in the journal of Nuklearmedizin Molecular Imaging and Therapy during 2004/2005 were retrospectively examined for their potential classification to molecular imaging or molecular guided therapy, functional imaging and therapy, and were compared to earlier analyses. Results: Of the 57 original papers examined, 36 (63%) were assigned to the category of molecular imaging / molecular guided therapy. Within this category, the number of original papers on molecular guided therapy increased by 19% compared to preceding periods. There was a general overall increase in the proportion of experimental papers and more frequent inclusion of basic background subjects. Conclusion: The development of molecular imaging as a direct instrument in therapy planning leads to further promotion of molecular guided therapy. The structural advantage of nuclear medicine, uniting method-lead diagnosis and therapy within one specialist subject, predestines it to advance molecular imaging and molecular guided therapy.

Zusammenfassung

Ziel und Methode: Die wissenschaftlichen Veröffentlichungen der Zeitschrift Nuklearmedizin Molecular Imaging and Therapy des Zeitraumes 2004/2005 werden retrospektiv hinsichtlich der Zuordenbarkeit zu molekularer Bildgebung und molekular geführter Therapie sowie funktioneller Bildgebung und Therapie untersucht und früheren Analysen gegenübergestellt. Ergebnisse: Von den 57 untersuchten Originalarbeiten werden 36 (63%) der Kategorie molekulare Bildgebung / molekular geführte Therapie zugeordnet. Innerhalb dieser Kategorie nehmen die Arbeiten zur molekular geführten Therapie gegenüber den Vorjahreszeiträumen auf 19% aller Originalarbeiten zu; dieses bei insgesamt ansteigendem Anteil an experimentellen Arbeiten und wachsendem Einbezug von Grundlagenfächern. Schlussfolgerung: Die Entwicklung der molekularen Bildgebung als direktes Instrument der Therapiesteuerung führt weiter zur Stärkung der molekular geführten Therapie. Der strukturelle Vorteil der Nuklearmedizin, methodisch geprägt Diagnostik und Therapie innerhalb einer Fachrichtung zu vereinen, prädestiniert sie dazu, die molekulare Bildgebung und molekular geführte Therapie voranzutreiben.

 
  • Literatur

  • 1 Alavi A, Lakhani P, Mavi A. et al. PET: a revolution in medical imaging. Radiol Clin North Am 2004; 42: 983-1001.
  • 2 Andreeff M, Wunderlich G, Behge K. et al. β-radiation exposure with 188Re-labelled pharmaceuticals. Nuklearmedizin 2005; 44: 94-8.
  • 3 Baçzyk M, Junik R, Ziemnick K. et al. Iodine prophylaxis intensification: Influence on radioiodine uptake and activity of 131I used in the treatment of hyperthyroid patients with Graves’ disease. Nuklearmedizin 2005; 44: 197-9.
  • 4 Bekis R, Aydin A, Tasci C. et al. The role of gamma probe activity counts in minimally invasive parathyroidectomy: Preliminary results. Nuklearmedizin 2004; 43: 190-4.
  • 5 Bekis R, Derebek E, Balci P. et al. 99mTc sestamibi scintimammography screening mammographic non-palpable suspicious breast lesions: preliminary results. Nuklearmedizin 2004; 43: 16-20.
  • 6 Bengel FM, Schachinger V, Dimmeler S. Cell-based therapies and imaging in cardiology. Eur J Nucl Med Mol Imaging 2005; 32 (Suppl. 02) S404-16.
  • 7 Biermann M, Pixberg MK, Dörr U. et al. Guidelines on radioiodine therapy for differentiated thyroid carcinoma: Impact on clinical practice. Nuklearmedizin 2005; 44: 229-34.
  • 8 Biersack H-J, Hartmann F, Rödel R. et al. Long term changes in serum T4, T3, and TSH in benign thyroid diseases: proof of a narrow individual variation. Nuklearmedizin 2004; 43: 158-60.
  • 9 Bohm I, Speck U, Schild H. Molekulare Bildgebung von Apoptose und Nekrose – Zellbiologische Grundlagen und Einsatz in der Onkologie. Röfo 2006; 178: 306-12.
  • 10 Bredow J, Kretzschmar M, Wunderlich G. et al. Therapy of malignant ascites in vivo by 211At-labelled microspheres. Nuklearmedizin 2004; 43: 63-8.
  • 11 Breyholz HJ, Schäfers M, Wagner S. et al. C-5-disubstituted Barbiturates as potential Molecular Probes for non-invasive MMP Imaging. J Med Chem 2005; 48: 3400-9.
  • 12 Britz-Cunningham SH, Adelstein SJ. Molecular targeting with radionuclides: state of the science. J Nucl Med 2003; 44: 1945-61.
  • 13 Büll U, Wieres FJ, Schneider W. et al. 18FDG-PET in 733 consecutive patients with or without sideby- side CT evaluation: Analysis of 921 lesions. Nuklearmedizin 2004; 43: 210-6.
  • 14 Chen L, Altmann A, Mier W. et al. Radioiodine therapy of hepatoma using targeted transfer of the human sodium/iodide symporter gene. J Nucl Med 2006; 47: 854-62.
  • 15 Chen P, Wang J, Hope K. et al. Nuclear localizing sequences promote nuclear translocation and enhance the radiotoxicity of the anti-CD33 monoclonal antibody HuM195 labeled with 111In in human myeloid leukemia cells. J Nucl Med 2006; 47: 827-36.
  • 16 Cholewinski W, Stefaniak B, Poniatowicz-Frasunek E. et al. Reduction of LVEF measured with gSPECT after 1–3 hours after physical exercise in CAD. Nuklearmedizin 2004; 43: 150-7.
  • 17 Csiki Z, Garai I, Varga J. et al. Microcirculation of the fingers in Raynaud’s syndrome: 99mTc-DTPA imaging. Nuklearmedizin 2005; 44: 29-32.
  • 18 Czernin J, Weber WA, Herschman HR. Molecular imaging in the development of cancer therapeutics. Ann Rev Med 2006; 57: 99-118.
  • 19 Dietl B, Marienhagen J. The therapeutic impact of 18F- FDG whole body PET. A radiooncologist’s view. Nuklearmedizin 2005; 44: 8-14.
  • 20 Döbert N, Hamscho N, Menzel C. et al. Limitations of dual time point FDG-PET imaging in the evaluation of focal abdominal lesions. Nuklearmedizin 2004; 43: 143-9.
  • 21 Döbert N, Menzel C, Diehl M. et al. Increased FDG bone marrow uptake after intracoronary progenitor cell therapy. Nuklearmedizin 2005; 44: 15-9.
  • 22 Doll J, Henze M, Bublitz O. et al. High resolution reconstruction of PET images using the iterative OSEM algorithm. Nuklearmedizin 2004; 43: 72-8.
  • 23 Doubrovin M, Serganova I, Mayer-Kuckuk P. et al. Multimodality in vivo molecular-genetic imaging. Bioconjug Chem 2004; 15: 1376-88.
  • 24 Dunkelmann S, Neumann V, Staub U. et al. Results of a risk adapted and functional radioiodine therapy in Graves’ disease. Nuklearmedizin 2005; 44: 238-42.
  • 25 Freudenberg LS, Sheu S, Görges R. et al. Prognostic value of c-erbB-2 expression in papillary thyroid carcinoma. Nuklearmedizin 2005; 44: 179-82.
  • 26 Grimm J, Wunder A. Current state of molecular imaging research. Röfo 2005; 177: 326-37.
  • 27 Haberkorn U, Mier W, Eisenhut M. Scintigraphic imaging of gene expression and gene transfer. Curr Med Chem 2005; 12: 779-94.
  • 28 Hacker M, Schnell-Inderst P, Noßke D. et al. Radiation exposure of patients undergoing nuclear medicine procedures in Germany between 1996 and 2000. Nuklearmedizin 2005; 44: 119-30.
  • 29 Hamscho N, Wilhelm A, Döbert N. et al. Residual kidney function after donor nephrectomy: Assessment by 99mTc-MAG3-Clearance. Nuklearmedizin 2005; 44: 200-4.
  • 30 Haubner R, Bruchertseifer F, Bock M. et al. Synthesis and biological evaluation of a 99mTc-labelled cyclic RGD-peptide for imaging the αvβ3 expression. Nuklearmedizin 2004; 43: 26-32.
  • 31 Hermann S, Wormanns D, Pixberg M. et al. Staging in childhood lymphoma: Differences between FDG-PET and CT. Nuklearmedizin 2005; 44: 1-7.
  • 32 Herschman HR. Molecular imaging: looking at problems, seeing solutions. Science 2003; 302: 605-8.
  • 33 Hevesy v G.. Some historical remarks on the application of radioactive indicators. Cardiologia 1952; 21: 226-32.
  • 34 Höpfner S, Treitl M, Becker-Gaab C. et al. Diagnosis of initial changes in patients suffering from rheumatoid arthritis Two year follow up control with a low-field magnetic resonance scanner, 3-phase bone scintigraphy and conventional x-ray. Nuklearmedizin 2004; 43: 195-202.
  • 35 Humplik BI, Sandrock D, Aurisch R. et al. Scintigraphic results in patients with lung transplants: a prospective comparative study. Nuklearmedizin 2005; 44: 62-8.
  • 36 Imam SK. Molecular nuclear imaging: the radiopharmaceuticals. Cancer Biother Radiopharm 2005; 20: 163-72.
  • 37 Inubushi M, Tamaki N. Positron emission tomography reporter gene imaging in the myocardium: for monitoring of angiogenic gene therapy in ischemic heart disease. J Card Surg 2005; 20: S20-4.
  • 38 Jain KK. Role of nanobiotechnology in developing personalized medicine for cancer. Technol Cancer Res Treat 2005; 4: 645-50.
  • 39 Kauppinen T, Koskela A, Diemling M. et al. Comparison of manual and automated quantification methods of 123I-ADAM. Nuklearmedizin 2005; 44: 205-12.
  • 40 Kelloff GJ, Krohn KA, Larson SM. et al. The progress and promise of molecular imaging probes in oncologic drug development. Clin Cancer Res 2005; 11: 7967-85.
  • 41 Kies P, Wichter T, Schäfers M. et al. Abnormal myocardial presynaptic norepinephrine recycling in patients with the Brugada syndrome. Circulation 2004; 110: 3017-22.
  • 42 Koch W, Rosa F, Knesewitsch P. et al. Guideline on radiation protection in medicine requires documentation of radioiodine therapy and follow-up: What are the benefits of an electronic database?. Nuklearmedizin 2005; 44: 49-55.
  • 43 Krause BJ, Poeppel TD, Reinhardt M. et al. Myocardial perfusion/metabolism mismatch and ventricular arrhythmias in the chronic post infarction state. Nuklearmedizin 2005; 44: 69-75.
  • 44 Kuikka JT. Quantitative accuracy of serotonergic neurotransmission imaging with high-resolution 123I SPECT. Nuklearmedizin 2004; 43: 185-9.
  • 45 Lang K, Kloska S, Straeter R. et al. Clinical value of amino acid imaging in paediatric brain tumours. Nuklearmedizin 2005; 44: 131-6.
  • 46 Lerch H, Jigalin A. Die Zeitschrift Nuklearmedizin: Trifft der Untertitel Journal of Functional and Molecular Imaging die derzeitige Veröffentlichungspraxis?. Nuklearmedizin 2003; 42: 229-33.
  • 47 Lerch H, Jigalin A. Information technology and nuclear medicine Primary digitalized data – and then?. Nuklearmedizin 2004; 43: 181-4.
  • 48 Lerch H, Jigalin A. Nuclear Medicine: Medical Technology Research. Nuklearmedizin 2005; 44: 267-71.
  • 49 Lerch H, Jigalin A. Scientific publishing in the journal NuclearMedicine . Nuklearmedizin 2002; 41: 171-7.
  • 50 Li S, Beheshti M. The radionuclide molecular imaging and therapy of neuroendocrine tumors. Curr Cancer Drug Targets 2005; 5: 139-48.
  • 51 Lin YCh, Tsai SCh, Hung GU. et al. Direct injection of 188Re-microspheres in the treatment of hepatocellular carcinoma. Nuklearmedizin 2005; 44: 76-80.
  • 52 Linke R, Muenzing W, Tatsch K. Is normal gastric emptying a predictor of normal gastric function?. Nuklearmedizin 2005; 44: 81-5.
  • 53 Manninen HI, Yang X. Imaging after vascular gene therapy. Eur J Radiol 2005; 56: 165-70.
  • 54 Meller B, Haase A, Seyfarth M. et al. Reduced radioiodine uptake at increased iodine intake and 131I-induced release of “cold” iodine stored in the thyroid. Nuklearmedizin 2005; 44: 137-42.
  • 55 Meller B, von Hof K, Genina E. et al. Diagnostic 123I and 131I activities and radioiodine therapy. Nuklearmedizin 2005; 44: 243-8.
  • 56 Min JJ, Gambhir SS. Gene therapy progress and prospects: noninvasive imaging of gene therapy in living subjects. Gene Ther 2004; 11: 115-25.
  • 57 Nikolaus S, Wirrwar A, Antke C. et al. State-ofthe- art of small animal imaging with high-resolution SPECT. Nuklearmedizin 2005; 44: 257-66.
  • 58 Nömayr A, Römer W, Hothorn T. et al. Anatomical accuracy of lesion localization. Nuklearmedizin 2005; 44: 149-55.
  • 59 Noßke D, Minkov V, Brix G. Establishment and application of diagnostic reference levels for nuclear medicine procedures in Germany. Nuklearmedizin 2004; 43: 79-84.
  • 60 Özer S, Dobrozemsky G, Kienast O. et al. Value of combined XCT/SPECT technology for avoiding false positive planar 123I-MIBG scintigraphy. Nuklearmedizin 2004; 43: 164-70.
  • 61 Pirnat E, Zaletel K, Gaberscek S. et al. Early changes of thyroid hormone concentrations after 131I therapy in Graves’ patients pretreated or not with methimazole. Nuklearmedizin 2004; 43: 129-34.
  • 62 Rau H, Lohmann K, Franke C. et al. Clinical outcomes of a multicenter study of radiosynoviorthesis in osteoarthritis and other disorders with concommitant synovitis in comparison with rheumatoid arthritis. Nuklearmedizin 2004; 43: 57-62.
  • 63 Reinhardt MJ, Weidling H, Breuel H-P. et al. Detection of impaired renal function: Is the modern serologic marker cystatin C more accurate than the 99mTc-MAG3 clearance?. Nuklearmedizin 2004; 43: 203-9.
  • 64 Riemann B, Könemann S, Pöpping D. et al. Early effects of irradiation on [123I]-IMT and [18F]-FDG uptake in rat C6 glioma cells. Strahlenther Onkol 2004; 180: 431-8.
  • 65 Rink T, Bormuth FJ, Schroth HJ. et al. Spectrometric assessment of thyroid depth within the radioiodine test. Nuklearmedizin 2005; 44: 192-6.
  • 66 Rink Th, Bormuth F-J, Braun S. et al. Concept and validation of a simple model of the intrathyroidal iodine kinetics. Nuklearmedizin 2004; 43: 21-5.
  • 67 Römer W, Fiedler E, Pavel M. et al. Attenuation correction of SPECT images based on separately performed CT: Effect on the measurement of regional uptake values. Nuklearmedizin 2005; 44: 20-8.
  • 68 Rosa F, Meimarakis G, Stahl A. et al. Colorectal cancer patients before resection of hepatic metastases Impact of 18F-FDG-PET on detecting extrahepatic disease. Nuklearmedizin 2004; 43: 135-40.
  • 69 Rota Kops E, Krause BJ. The influence of filtered back-projection and iterative reconstruction on partial volume correction in PET. Nuklearmedizin 2005; 44: 99-106.
  • 70 Ruf J, Lopez Hänninen E, Steinmüller T. et al. Preoperative localization of parathyroid glands Use of MRI, scintigraphy and image fusion. Nuklearmedizin 2004; 43: 85-90.
  • 71 Sahlmann CO, Siefker U, Lehmann K. et al. Quantitative thyroid scintigraphy for the differentiation of Graves’ disease and hyperthyroid autoimmune thyroiditis. Nuklearmedizin 2004; 43: 124-8.
  • 72 Schäfers KP, Reader AJ, Kriens M. et al. Performance Evaluation of the 32-Module quadHIDAC SmallAnimal PET Scanner. J Nucl Med 2005; 46: 996-1004.
  • 73 Schaffhauser K, Hänscheid H, Rendl J. et al. Intrathyroidal iodine concentration after application of non-ionic contrast media with and without prophylactic application of perchlorate. Nuklearmedizin 2005; 44: 143-8.
  • 74 Schmidt M, Schmalenbach M, Jungenhülsing M. et al. 18F-FDG PET for detecting recurrent head and neck cancer, local lymph node involvement and distant metastases. Comparison of qualitative visual and semiquantitative analysis. Nuklearmedizin 2004; 43: 91-101.
  • 75 Schmitz G, Füzesi L, Struck J. et al. Expression of the sodium iodide symporter in differentiated thyroid cancer. Nuklearmedizin 2005; 44: 86-93.
  • 76 Schnell-Inderst P, Hacker M, Noßke D. et al. Aquisition of age- and sex-dependent patient data for the calculation of annual radiation exposure in nuclear medicine: a German pilot study. Nuklearmedizin 2004; 43: 45-56.
  • 77 Schwab R, Wieler H, Birtel S. et al. Confronting the practice of surgery on differentiated thyroid cancer with current guidelines in Germany. Nuklearmedizin 2005; 44: 185-91.
  • 78 Seddon BM, Workman P. The role of functional and molecular imaging in cancer drug discovery and development. Br J Radiol 2003; 76 (Suppl. 02) S128-38.
  • 79 Shah K. Current advances in molecular imaging of gene and cell therapy for cancer. Cancer Biol Ther 2005; 4: 518-23.
  • 80 Stahl A, Stollfuss J, Ott K. et al. FDG PET and CT in locally advanced adenocarcinomas of the distal oesophagus. Nuklearmedizin 2005; 44: 249-55.
  • 81 Verma IM, Woo SLC. Modern medicine, a young society, and a new journal. Mol Ther 2000; 1: iii.
  • 82 Walter MA, Christ-Crain M, Müller B. et al. Radioiodine uptake and thyroid hormone levels on or off simultaneous carbimazole medication: A prospective paired comparison. Nuklearmedizin 2005; 44: 33-6.
  • 83 Weber WA. Chaperoning drug development with PET. J Nucl Med 2006; 47: 735-7.
  • 84 Weber WA. Use of PET for monitoring cancer therapy and for predicting outcome. J Nucl Med 2005; 46: 983-95.
  • 85 Weckesser M, Langen KJ, Rickert CH. et al. O-(-[18F]fluoroethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumors. Eur J Nucl Med Mol Imaging 2005; 32: 422-9.
  • 86 Weckesser M, Schober O. Is whole-body FDGPET valuable for health screening?. Eur J Nucl Med Mol Imaging 2005; 32: 342-3.
  • 87 Weiss M, Gildehaus FJ, Brinkbäumer K. et al. Lymph kinetics with technetium-99m labeled radiopharmaceuticals. Nuklearmedizin 2005; 44: 156-65.
  • 88 Weiss M, Schmid RA, Kunte C. et al. First experiences with a new radiopharmaceutical for sentinel lymph node detection in malignant melanoma: 99mTc colloidal rhenium sulphide. Nuklearmedizin 2004; 43: 10-5.
  • 89 Weitemeyer L, Kellinghaus C, Weckesser M. et al. The Prognostic Value of [18F]FDG-PET in Nonrefractory Partial Epilepsy. Epilepsia 2005; 46: 1654-60.
  • 90 Yang DJ, Kim EE, Inoue T. Targeted molecular imaging in oncology. Ann Nucl Med 2006; 20: 1-11.
  • 91 Zöphel K, Wunderlich G, Gruning T. et al. Where does subclinical hypothyroidism start? Implications for the definition of the upper reference limit for thyroid stimulating hormone. Nuklearmedizin 2005; 44: 56-61.