Eur J Pediatr Surg 2019; 29(06): 516-520
DOI: 10.1055/s-0038-1676979
Original Article
Georg Thieme Verlag KG Stuttgart · New York

Esophageal Blood Flow May Not Be Directly Influenced by Anastomotic Tension: An Exploratory Laser Doppler Study in Swine

Christina Oetzmann von Sochaczewski
1   Department of Paediatric Surgery, Universitätsmedizin Mainz, Mainz, Germany
,
Axel Heimann
2   Institute for Neurosurgical Pathophysiology, Universitätsmedizin Mainz, Mainz, Germany
,
Andreas Linder
1   Department of Paediatric Surgery, Universitätsmedizin Mainz, Mainz, Germany
,
Oliver Kempski
2   Institute for Neurosurgical Pathophysiology, Universitätsmedizin Mainz, Mainz, Germany
,
Oliver J. Muensterer
1   Department of Paediatric Surgery, Universitätsmedizin Mainz, Mainz, Germany
› Institutsangaben
Weitere Informationen

Publikationsverlauf

22. August 2018

25. November 2018

Publikationsdatum:
04. Januar 2019 (online)

Abstract

Background Anastomotic tension has been linked to leakage and stenosis in esophageal surgery in both adults and children. We aimed to determine the effects of esophageal topography, operative technique, and anastomotic tension on esophageal blood flow.

Materials and Methods We divided and reanastomosed the esophagi at the carinal level with increasing levels of anastomotic tension in piglets (n = 10) and sham controls (n = 4). We examined esophageal blood flow pre- and postoperatively using laser Doppler flowmetry at the anastomosis and two predetermined proximal and distal points. Blood flow in relation to distance from the anastomosis was examined by multivariate linear regression.

Results Thoracotomy alone did not influence perfusion at the carinal level in shams (Δ = 3.13 laser Doppler units, 95% confidence interval: −3.4 to 9.7, p = 0.2686). We constructed a (F[5,134] = 6.34, p < 0.0001) multinomial regression model based on distance to the anastomotic site and pre-/postoperative measurements (adjusted R 2 = 0.1624). Tissue blood flow was higher distant to the carina, but lower postoperatively and not influenced by the tension resulting from the extent of resection (F[1, 8] = 1.134, p = 0.318).

Conclusion Esophageal blood flow is higher at greater distances to the carinal level and hampered by esophageal division and reanastomosis. The extent of resection has less influence than previously assumed. Therefore, leakage and stenosis after esophageal anastomosis may not solely be caused by insufficient anastomotic blood flow.

 
  • References

  • 1 Koivusalo AI, Pakarinen MP, Rintala RJ. Modern outcomes of oesophageal atresia: single centre experience over the last twenty years. J Pediatr Surg 2013; 48 (02) 297-303
  • 2 Lal DR, Gadepalli SK, Downard CD. , et al; Midwest Pediatric Surgery Consortium. Perioperative management and outcomes of esophageal atresia and tracheoesophageal fistula. J Pediatr Surg 2017; 52 (08) 1245-1251
  • 3 Schneider A, Blanc S, Bonnard A. , et al. Results from the French National Esophageal Atresia register: one-year outcome. Orphanet J Rare Dis 2014; 9: 206
  • 4 Michaud L, Guimber D, Sfeir R. , et al. Sténose anastomotique après traitement chirurgical de lˈatrésie de lˈœsophage : fréquence, facteurs de risque et efficacité des dilatations œsophagiennes. Arch Pediatr 2001; 8: 268-274
  • 5 Serhal L, Gottrand F, Sfeir R. , et al. Anastomotic stricture after surgical repair of esophageal atresia: frequency, risk factors, and efficacy of esophageal bougie dilatations. J Pediatr Surg 2010; 45 (07) 1459-1462
  • 6 Parolini F, Leva E, Morandi A. , et al. Anastomotic strictures and endoscopic dilatations following esophageal atresia repair. Pediatr Surg Int 2013; 29 (06) 601-605
  • 7 Okata Y, Maeda K, Bitoh Y. , et al. Evaluation of the intraoperative risk factors for esophageal anastomotic complications after primary repair of esophageal atresia with tracheoesophageal fistula. Pediatr Surg Int 2016; 32 (09) 869-873
  • 8 Upadhyaya VD, Gangopadhyaya AN, Gupta DK. , et al. Prognosis of congenital tracheoesophageal fistula with esophageal atresia on the basis of gap length. Pediatr Surg Int 2007; 23 (08) 767-771
  • 9 Thakkar HS, Cooney J, Kumar N, Kiely E. Measured gap length and outcomes in oesophageal atresia. J Pediatr Surg 2014; 49 (09) 1343-1346
  • 10 Hermreck AS, Crawford DG. The esophageal anastomotic leak. Am J Surg 1976; 132 (06) 794-798
  • 11 Mahoney JL, Condon RE. Adenocarcinoma of the esophagus. Ann Surg 1987; 205 (05) 557-562
  • 12 Urschel JD, Scott PG, Williams HTG. The effect of mechanical stress on soft and hard tissue repair; a review. Br J Plast Surg 1988; 41 (02) 182-186
  • 13 Guo W, Fonkalsrud EW, Swaniker F, Kodner A. Relationship of esophageal anastomotic tension to the development of gastroesophageal reflux. J Pediatr Surg 1997; 32 (09) 1337-1340
  • 14 Takada Y, Kent G, Filler RM. Circular myotomy and esophageal length and safe esophageal anastomosis: an experimental study. J Pediatr Surg 1981; 16 (03) 343-348
  • 15 Parker EF, Brockington WS. Esophageal resection with end-to-end anastomosis: experimental and clinical observations. Ann Surg 1949; 129: 588-603
  • 16 Villegas-Alvarez F, Olvera-Durán J, Rodríguez-Aranda E, Carmona-Mancilla A, Vigueras-Villaseñor RM, Méndez-Ramírez I. Esophageal anastomotic failure: an experimental study. Arch Med Res 2003; 34 (03) 171-175
  • 17 Fujiwara H, Kuga T, Esato K. High submucosal blood flow and low anastomotic tension prevent anastomotic leakage in rabbits. Surg Today 1997; 27 (10) 924-929
  • 18 Rajan V, Varghese B, van Leeuwen TG, Steenbergen W. Review of methodological developments in laser Doppler flowmetry. Lasers Med Sci 2009; 24 (02) 269-283
  • 19 The R core team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; 2018
  • 20 Papenmeier F. Powerbydesign: Power Estimates for ANOVA Designs. 2018. Available at: https://CRAN.R-project.org/package=powerbydesign . Accessed November 11, 2018
  • 21 Inui T, Alessandri B, Heimann A. , et al. Neuroprotective effect of ceftriaxone on the penumbra in a rat venous ischemia model. Neuroscience 2013; 242: 1-10
  • 22 Ikeda Y, Niimi M, Kan S, Shatari T, Takami H, Kodaira S. Clinical significance of tissue blood flow during esophagectomy by laser Doppler flowmetry. J Thorac Cardiovasc Surg 2001; 122 (06) 1101-1106
  • 23 Skandalakis JE, Ellis H. Embryologic and anatomic basis of esophageal surgery. Surg Clin North Am 2000; 80 (01) 85-155
  • 24 Ashcraft KW, Holder TM. Esophageal atresia and tracheoesophageal fistula malformations. Surg Clin North Am 1976; 56 (02) 299-315
  • 25 Hannon E, Spitz L, De Coppi P. Managing the complex Esophagus. In: Mattei P, Nichols PF, Rollins II MD, Muratore CS. , eds. Fundamentals of Pediatric Surgery. Cham: Springer International Publishing; 2017: 283-290
  • 26 Tambucci R, Angelino G, De Angelis P. , et al. Anastomotic strictures after esophageal atresia repair: incidence, investigations, and management, including treatment of refractory and recurrent strictures. Front Pediatr 2017; 5: 120
  • 27 Smithers CJ, Hamilton TE, Manfredi MA. , et al. Categorization and repair of recurrent and acquired tracheoesophageal fistulae occurring after esophageal atresia repair. J Pediatr Surg 2017; 52 (03) 424-430
  • 28 Pearson EG, Downey EC, Barnhart DC. , et al. Reflux esophageal stricture--a review of 30 years' experience in children. J Pediatr Surg 2010; 45 (12) 2356-2360
  • 29 Chung RS, Hitch DC, Armstrong DN. The role of tissue ischemia in the pathogenesis of anastomotic stricture. Surgery 1988; 104 (05) 824-829
  • 30 Gooszen JAH, Goense L, Gisbertz SS, Ruurda JP, van Hillegersberg R, van Berge Henegouwen MI. Intrathoracic versus cervical anastomosis and predictors of anastomotic leakage after oesophagectomy for cancer. Br J Surg 2018; 105 (05) 552-560
  • 31 Jansen-Winkeln B, Maktabi M, Takoh JP. , et al. Hyperspektral-Imaging bei gastrointestinalen Anastomosen. Chirurg 2018; 89 (09) 717-725
  • 32 Ishige F, Nabeya F, Hoshino I. , et al. Quantitative assessment of the blood perfusion of the gastric conduit by indocyanine green imaging. J Surg Res 2019; 234: 303-310
  • 33 Kempski O, Heimann A, Strecker U. On the number of measurements necessary to assess regional cerebral blood flow by local laser Doppler recordings: a simulation study with data from 45 rabbits. Int J Microcirc Clin Exp 1995; 15 (01) 37-42
  • 34 Soehle M, Heimann A, Kempski O. On the number of measurement sites required to assess regional cerebral blood flow by laser-Doppler scanning during cerebral ischemia and reperfusion. J Neurosci Methods 2001; 110 (1-2): 91-94
  • 35 Hesterberg TC. What teachers should know about the bootstrap: resampling in the undergraduate statistics curriculum. Am Stat 2015; 69 (04) 371-386
  • 36 Button KS, Ioannidis JP, Mokrysz C. , et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci 2013; 14 (05) 365-376