Synthesis 2019; 51(23): 4417-4416
DOI: 10.1055/s-0039-1690034
paper
© Georg Thieme Verlag Stuttgart · New York

Photochemical Deracemization of Chiral Sulfoxides Catalyzed by a Hydrogen-Bonding Xanthone Sensitizer

Laura Wimberger
,
Thilo Kratz
,
Thorsten Bach
Department of Chemistry and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany   Email: thorsten.bach@ch.tum.de
› Author Affiliations
This project was supported by the Deutsche Forschungsgemeinschaft (Ba 1372-24/1) and by the TUM Graduate School.
Further Information

Publication History

Received: 18 October 2019

Accepted: 21 October 2019

Publication Date:
04 November 2019 (online)


In memory of Dieter Enders

Abstract

Several chiral sulfoxides with a lactam hydrogen-bonding site were prepared and their photochemical behavior was studied in the presence of xanthone and thioxanthone sensitizers. While acyclic sulfoxides showed only decomposition, chiral benzothiazinone-1-oxides with a stereogenic sulfur atom underwent a stereomutation upon irradiation at λ = 366 nm in the presence of catalytic quantities of a xanthone sensitizer. A chiral xanthone with a 1,5,7-trimethyl-3-azabicyclo-[3.3.1]nonan-2-one backbone was employed in catalytic quantities (5 mol%) to achieve a deracemization reaction of racemic benzothiazinone-1-oxides in acetonitrile solution. Five substrates could be successfully deracemized in good yields and with up to 55% ee.

Supporting Information

Primary Data

 
  • References


    • Reviews:
    • 1a Han J, Soloshonok VA, Klika KD, Drabowicz J, Wzorek A. Chem. Soc. Rev. 2018; 47: 1307
    • 1b Fernández I, Khiar N. Chem. Rev. 2003; 103: 3651
  • 2 Pilbrant Å, Cederberg C. Scand. J. Gastroenterol. 1985; 20: 113
  • 3 Shen TY. In The Search for Anti-Inflammatory Drugs . Merluzzi VJ. Adams J. Birkhäuser; Boston: 1995: 105-128
  • 4 Persellin RH, Schmid FR. JAMA 1961; 175: 971

    • Reviews on enantioselective sulfoxidation:
    • 6a O’Mahony GE, Ford A, Maguire AR. J. Sulfur Chem. 2013; 34: 301
    • 6b Wojaczyńska E, Wojaczyński J. Chem. Rev. 2010; 110: 4303
    • 6c Legros J, Dehli JR, Bolm C. Adv. Synth. Catal. 2005; 347: 19
    • 6d Kagan HB, Diter P. In Organosulfur Chemistry, Vol. 2. Page P. Academic Press; San Diego: 1998: 1-39
  • 7 Balavoine G, Juge S, Kagan HB. Tetrahedron Lett. 1973; 14: 4159
    • 8a Mislow K, Axelrod M, Rayner DR, Gotthardt H, Coyne LM, Hammond GS. J. Am. Chem. Soc. 1965; 87: 4958
    • 8b Archer RA, DeMarco PV. J. Am. Chem. Soc. 1969; 91: 1530
    • 8c Kishi M, Komeno T. Tetrahedron Lett. 1971; 12: 2641
    • 8d Ganter C, Moser J.-F. Helv. Chim. Acta 1971; 54: 2228
  • 9 Review: Jenks WS, Gregory DD, Guo Y, Lee W, Tetzlaff T. In Organic Photochemistry . Ramamurthy V. Schanze KS. Dekker; New York: 1997: 1-56
  • 10 Vos BW, Jenks WS. J. Am. Chem. Soc. 2002; 124: 2544
  • 11 Kropp PJ, Fryxell GE, Tubergen MW, Hager MW, Harris GD. Jr, McDermott TP. Jr, Tornero-Velez R. J. Am. Chem. Soc. 1991; 113: 7300
    • 12a Guo Y, Jenks WS. J. Org. Chem. 1997; 62: 857
    • 12b Tsurutani Y, Machida S, Horie K, Yukio K, Nakano H, Hirao K. J. Photochem. Photobiol., A 1999; 122: 161
    • 12c Lee W, Jenks WS. J. Org. Chem. 2001; 66: 474
    • 12d Di Stefano S, Mazzonna M, Bodo E, Mandolini L, Lanzalunga O. Org. Lett. 2011; 13: 142
  • 13 Jenks WS, Lee W, Shutters D. J. Phys. Chem. 1994; 98: 2282
    • 14a Schultz AG, Schlessinger RH. J. Chem. Soc. D 1970; 1294
    • 14b Guo Y, Jenks WS. J. Org. Chem. 1995; 60: 5480
    • 14c Aurisicchio C, Baciocchi E, Gerini MF, Lanzalunga O. Org. Lett. 2007; 9: 1939
  • 15 Müller C, Bauer A, Bach T. Angew. Chem. Int. Ed. 2009; 48: 6640
  • 16 Alonso R, Bach T. Angew. Chem. Int. Ed. 2014; 53: 4368
  • 17 Burg F, Bach T. J. Org. Chem. 2019; 84: 8815
  • 18 Hölzl-Hobmeier A, Bauer A, Silva AV, Huber SM, Bannwarth C, Bach T. Nature 2018; 564: 240
  • 19 Tröster A, Bauer A, Jandl C, Bach T. Angew. Chem. Int. Ed. 2019; 58: 3538
  • 20 Murov SL, Carmichael I, Hug GL. Handbook of Photochemistry, 2nd ed. Dekker; New York: 1993: 82
  • 21 Lin Z.-P, Aue WA. Spectrochim. Acta, Part A 1999; 56: 111
  • 23 Rafferty P, Calderwood D, Arnold LD, Gonzalez Pascual B, Ortego Matinez JL, Perez de Vega MJ, Fernandez IF. (BASF) Patent WO 0075139 A2, 2000
  • 24 Pinto DJ. P, Quan ML, Smith LM, Orwat MJ, Gilligan PJ. (Bristol-Myers Squibb) WO 2008/157162 A1, 2008
  • 25 Pownall HJ, Mantulin WM. Molec. Phys. 1976; 31: 1393
  • 26 Iyer A, Clay A, Jockusch S, Sivaguru J. J. Phys. Org. Chem. 2017; 30: e3738
  • 27 Munst R, Villnow T, Ziegenbein CT, Gilch P, Marian C, Rai-Constapel V. Phys. Chem. Chem. Phys. 2016; 18: 6637; and references cited therein
  • 28 Wagner P, Park B.-S. Org. Photochem. 1991; 11: 227
    • 29a Dexter DL. J. Chem. Phys. 1953; 21: 836
    • 29b Turro NJ, Ramamurthy V, Scaiano J. Modern Molecular Photochemistry of Organic Molecules . University Science Books; Sausalito: 2010: 411-413
  • 30 Fuller AL, Aitken RA, Ryan BM, Slawin AM. Z, Woollins JD. J. Chem. Crystallogr. 2009; 39: 407
  • 31 For another recently reported deracemization, see: Shin NY, Ryss JM, Zhang X, Miller SJ, Knowles RR. Science 2019; 366: 364
  • 32 Huang W.-S, Xu R, Dodd R, Shakespeare WC. Tetrahedron Lett. 2013; 54: 5214