Synthesis 2019; 51(19): 3736-3746
DOI: 10.1055/s-0039-1690127
paper
© Georg Thieme Verlag Stuttgart · New York

Highly γ-Regioselective 1,2-Addition of α,β-Unsaturated Oxime Ethers with Allylzinc Bromides: A Straightforward Approach for the Synthesis of Homoallylic Amines

Bo Yang
,
Songlin Zhang
Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China   Email: zhangsl@suda.edu.cn
› Author Affiliations
The study was supported by the National Natural Science Foundation of China (No. 21072143).
Further Information

Publication History

Received: 24 March 2019

Accepted after revision: 21 June 2019

Publication Date:
11 July 2019 (online)


Abstract

A highly regioselective reaction between allylzinc bromide reagents and α,β-unsaturated oxime ethers for the one-step synthesis of the homoallylic amines is reported. This process is a regioselective 1,2-addition reaction providing a new γ-position with carbon–carbon bond formation. Furthermore, the reaction substrates are widely applicable and can be produced in a high yield.

Supporting Information

 
  • References

    • 1a Perlmutter P. Conjugate Addition Reactions in Organic Synthesis. Pergamon; Oxford: 1992
    • 1b Tomioka K, Nagaoka Y. In Comprehensive Asymmetric Catalysis, Vol. III. Jacobsen EN, Pfaltz A, Yamamoto H. Springer; New York: 1999. Chap. 31
    • 1c Feringa BL. Acc. Chem. Res. 2000; 33: 346
    • 1d Tomioka K. In Modern Carbonyl Chemistry . Otera J. Wiley-VCH; Weinheim: 2000. Chap. 12
    • 1e Sibi MP, Manyem S. Tetrahedron 2000; 56: 8033
    • 1f Lipshutz BH. In Organometallics in Organic Synthesis, A Manual, 2nd ed. Schlosser M. Wiley; Chichester: 2002: 665-815
    • 1g Tomioka K. In Comprehensive Asymmetric Catalysis . Jacobsen EN, Pfaltz A, Yamamoto H. Springer; New York: 2004. Supplement to Chap. 31.1, 109-124
    • 2a Daly JW, Garraffo HM, Spande TF. In Alkaloids: Chemical and Biological Perspectives, Vol. 13: Pelletier S. W. Pergamon Press; New York: 1999: 1-161
    • 2b Lawrence SA. Amines: Synthesis, Properties and Applications . Cambridge University Press; Cambridge: 2004
    • 2c Vazzana I, Budriesi R, Terranova E, Ioan P, Ugenti MP, Tasso B, Chiarini A, Sparatore F. J. Med. Chem. 2007; 50: 334
    • 2d Pu X, Ma D. J. Org. Chem. 2003; 68: 4400
    • 3a Pace V, Castoldi L, Hoyos P, Sinisterra JV, Pregnolato M, Sanchez-Montero JM. Tetrahedron 2011; 67: 2670
    • 3b Soeta T, Ishizaka T, Ukaji Y. J. Org. Chem. 2016; 81: 2817
    • 3c Hirner S, Kolb A, Westmeier J, Gebhardt S, Middel S, Harms K, Zezschwitz PV. Org. Lett. 2014; 16: 3162
    • 3d Tomioka K, Shioya Y, Nagaoka Y, Yamada K. J. Org. Chem. 2001; 66: 7051
    • 3e Tomioka K, Okamoto T, Kanai M, Yamataka H. Tetrahedron Lett. 1994; 35: 1891
    • 3f Moody CJ, Gallagher PT, Lightfoot AP, Slawin AM. Z. J. Org. Chem. 1999; 64: 4419
    • 3g Soeta T, Kuriyama M, Tomioka K. J. Org. Chem. 2005; 70: 297
    • 3h Tomioka K, Shindo M, Koga K. J. Am. Chem. Soc. 1989; 111: 8266
    • 3i Shindo M, Koga K, Tomioka K. J. Org. Chem. 1998; 63: 9351
    • 4a Matsumoto K, Koyachi K, Shindo M. Tetrahedron 2013; 69: 1043
    • 4b Saha M, Carter RG. Org. Lett. 2013; 15: 736
    • 4c Amat M, Perez M, Proto S, Gatti T, Bosch J. Chem. Eur. J. 2010; 16: 9438
    • 4d Nielsen DK, Nielsen LL, Jones SB, Toll L, Asplund MC, Castle SL. J. Org. Chem. 2009; 74: 1187
    • 4e Kuang Y, Liu X, Chang L, Wang M, Lin L, Feng X. Org. Lett. 2011; 13: 3814
    • 5a Seebach D, Ertas M, Locher R, Schweizer WB. Helv. Chim. Acta 1985; 68: 264
    • 5b Cooke MP. Jr. J. Org. Chem. 1986; 51: 1637
    • 5c Tomioka K, Shindo M, Koga K. J. Org. Chem. 1990; 55: 2276
    • 5d Tomioka K, Shindo M, Koga K. Tetrahedron Lett. 1990; 31: 1739
    • 5e Xu F, Tillyer RD, Tschaen DM, Grabowski EJ. J, Reider PJ. Tetrahedron: Asymmetry 1998; 9: 1651
    • 6a Delaye P.-O, Vasse J.-L, Szymoniak J. Org. Lett. 2012; 14: 3004
    • 6b Yamamoto Y, Asao N. Chem. Rev. 1993; 93: 2207
    • 7a Friestad GK, Mathies AK. Tetrahedron 2007; 63: 2541
    • 7b Ding H, Friestad GK. Synthesis 2005; 2815
    • 7c Wright DL, Schulte JP. II, Page MA. Org. Lett. 2000; 2: 1847
    • 7d Oraa H, Stagies R, van der Marel GA, van Boom JH, Blechert S. J. Chem. Soc., Chem. Commun. 2000; 1501
    • 7e Voigtmann V, Blechert S. Synthesis 2000; 893
    • 7f Kazmaier U, Zumpe FL. Angew. Chem. Int. Ed. 1999; 38: 1468
    • 7g Fang X, Johannsen M, Yao S, Gathergood N, Hazell RG, Jørgensen KA. J. Org. Chem. 1999; 64: 4844
    • 7h Kobayashi S, Ishitani H. Chem. Rev. 1999; 99: 1069
    • 7i Brown RC. D, Fisher M. J. Chem. Soc., Chem. Commun. 1999; 1547
    • 7j Meester WJ. N, Rutjes FP. J. T, Hemkens PH. H, Hiemstra H. Tetrahedron Lett. 1999; 40: 1601
    • 7k Bloch R. Chem. Rev. 1998; 98: 1407
    • 7l Enders D, Reinhold U. Tetrahedron: Asymmetry 1997; 8: 1895
    • 7m Anderson JC, Siddons DC, Smith SC, Swarbrick ME. J. Chem. Soc., Chem. Commun. 1995; 1835
    • 7n Enders D, Schankat J, Klatt M. Synlett 1994; 795
    • 7o Hart DJ, Ha D.-C. Chem. Rev. 1989; 89: 1447
    • 8a Kandepedu N, Abrunhosa-Thomas I, Troin Y. Org. Chem. Front. 2017; 4: 1655
    • 8b Ramachandran PV, Burghardt TE. Chem. Eur. J. 2005; 11: 4387
    • 8c Puentes CO, Kouznetsov V. J. Heterocycl. Chem. 2002; 39: 595
    • 8d Hayashi T, Yamamoto A, Ito Y, Nishioka E, Miura H, Yanagi K. J. Am. Chem. Soc. 1989; 111: 6301
    • 8e Burgess K, Liu L, Pal B. J. Org. Chem. 1993; 58: 4758
    • 8f Trost BM, Van Vranken DL. J. Am. Chem. Soc. 1993; 115: 444
    • 8g Chiral Amine Synthesis: Methods, Developments and Applications. Nugent TC. Wiley-VCH; Weinheim: 2010
    • 9a Andrews PC, Peatt AC, Raston CL. Green Chem. 2004; 6: 119
    • 9b Chan TH, Lu W. Tetrahedron Lett. 1998; 39: 8605
    • 9c Law MC, Cheung TW, Wong K.-Y, Chan TH. J. Org. Chem. 2007; 72: 923
    • 9d Choucair B, Leon H, Mire MA, Lebreton C, Mosset P. Org. Lett. 2000; 2: 1851
    • 9e Vilaivan T, Winotapan C, Banphavichit V, Shinada T, Ohfune Y. J. Org. Chem. 2005; 70: 3464
    • 9f Bernardi L, Ceré V, Femoni C, Pollicino S, Ricci A. J. Org. Chem. 2003; 68: 3348
    • 10a Pandiancherri S, Lupton DW. Tetrahedron Lett. 2011; 52: 671
    • 10b Yamamoto Y, Komatsu T, Maruyama K. J. Org. Chem. 1985; 50: 3115
  • 11 Yanada R, Okaniwa M, Kaieda A, Ibuka T, Takemoto Y. J. Org. Chem. 2001; 66: 1283
    • 12a Billet M, Klotz P, Mann A. Tetrahedron Lett. 2001; 42: 631
    • 12b Panek JS, Jain NF. J. Org. Chem. 1994; 59: 2674
    • 12c Veenstra SJ, Schmid P. Tetrahedron Lett. 1997; 38: 997
    • 12d Roux M, Santelli M, Parrain JL. Org. Lett. 2000; 2: 1701
    • 13a Das B, Satyalakshmi G, Suneel K, Shashikanth B. Tetrahedron Lett. 2008; 49: 7209
    • 13b Akiyama T, Iwai J, Onuma Y, Kagoshima H. Chem. Commun. 1999; 2191
    • 13c Aspinall HC, Bissett JS, Greeves N, Levin D. Tetrahedron Lett. 2002; 43: 323
    • 13d Yadav JS, Reddy BV. S, Reddy PS. R, Rao MS. Tetrahedron Lett. 2002; 43: 6245
    • 13e Akiyama T, Onuma Y. J. Chem. Soc., Perkin Trans. 1 2002; 1157
    • 13f Yadav JS, Reddy BV. S, Raju AK. Synthesis 2003; 883
    • 13g Das B, Ravikanth B, Laxminarayana K, Rac BV. J. Mol. Catal. A: Chem. 2006; 253: 92
    • 13h Nagarapu L, Paparaju V, Pathuri G, Kantevari S, Pakkiru RR, Kamalla R. J. Mol. Catal. A: Chem. 2007; 267: 53
    • 13i Xie ZF, Li GL, Zhao G, Wang JD. Chin. J. Chem. 2009; 27: 925
    • 13j Sharma RK, Samuelson AG. J. Chem. Sci. 2006; 118: 569
    • 13k Andrade CK. Z, Oliveira GR. Tetrahedron Lett. 2002; 43: 1935
    • 13l Keck GE, Enholm EJ. J. Org. Chem. 1985; 50: 146
    • 13m Wang DK, Dai LX, Hou XL. Tetrahedron Lett. 1995; 36: 8649
    • 13n Nishigaichi Y, Takuwa A, Naruta Y, Maruyama K. Tetrahedron 1993; 49: 7395
    • 13o Marshall JA. Chem. Rev. 1996; 96: 31
    • 14a Itsuno S, Watanabe K, Matsumoto T, Kuroda S, Yokoi A, El-Shehawy A. J. Chem. Soc., Perkin Trans. 1 1999; 2011
    • 14b Itsuno S, Watanabe K, Ito K, El-Shehawy AA, Sarhan AA. Angew. Chem., Int. Ed. Engl. 1997; 36: 109
    • 14c Watanabe K, Kuroda S, Yokoi A, Ito K, Itsuno S. J. Organomet. Chem. 1999; 581: 103
    • 14d Kuznetsov NY, Tikhov RM, Strelkova TV, Bubnov YN. Org. Biomol. Chem. 2018; 16: 7115
    • 14e Yus M, Gonzalez-Gomez JC, Foubelo F. Chem. Rev. 2011; 111: 7774
    • 14f Yus M, González-Gómez JC, Foubelo F. Chem. Rev. 2013; 113: 5595
    • 14g Watanabe K, Ito K, Itsuno S. Tetrahedron: Asymmetry 1995; 6: 1531
    • 14h Huo H.-X, Duvall JR, Huanga M.-Y, Hong R. Org. Chem. Front. 2014; 1: 303
    • 14i Vieira EM, Snapper ML, Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 3332
    • 14j Ramadhar TR, Batey RA. Synthesis 2011; 1321
  • 15 Akiyama T, Iwai J. Synlett 1998; 273
  • 16 Kobayashi S, Araki M, Yasuda M. Tetrahedron Lett. 1995; 36: 5773
  • 17 Kissman HM, Tarbell DS, Williams J. J. Am. Chem. Soc. 1953; 75: 2959
    • 18a Kulkarni NA, Chen K. Tetrahedron Lett. 2006; 47: 611
    • 18b Kulkarni NA, Yao C.-F, Chen K. Tetrahedron 2007; 63: 7816
    • 18c Wolan A, Joachimczak A, Budny M, Kozakiewicz A. Tetrahedron Lett. 2011; 52: 1195
    • 18d Ritson DJ, Cox RJ, Berge J. Org. Biomol. Chem. 2004; 2: 1921
    • 18e Miyabe H, Yamaoka Y, Naito T, Takemoto Y. J. Org. Chem. 2004; 69: 1415
    • 18f Chen MZ, McLaughlin M, Takahashi M, Tarselli MA, Yang DX, Umemura S, Micalizio GC. J. Org. Chem. 2010; 75: 8948
    • 18g Zhao LM, Zhang SQ, Jin HS, Wan LJ, Dou F. Org. Lett. 2012; 14: 886
  • 19 Frankland E. Justus Liebigs Ann. Chem. 1849; 71: 171
    • 20a Knochel P, Singer RD. Chem. Rev. 1993; 93: 2117
    • 20b Stahl L, Smoliakova IP. In Comprehensive Organometallic Chemistry III, Vol. 2. Crabtree H, Mingos DM. P. Elsevier; Amsterdam: 2007. Chap. 2.06, 309-418
    • 21a Knochel P, Jones P. Organozinc Reagents: A Practical Approach . Oxford University Press; New York: 1999: 354
    • 21b Zhao LM, Jin HS, Wan LJ, Zhang LM. J. Org. Chem. 2011; 76: 1831
    • 21c Chen M, Zheng XL, Li WQ, He J, Lei AW. J. Am. Chem. Soc. 2010; 132: 4101
    • 21d Kobayashi K, Kondo Y. Org. Lett. 2009; 11: 2035
    • 21e Son S, Fu GC. J. Am. Chem. Soc. 2008; 130: 2756
    • 21f Luo LC, Zhang H, Duan H, Liu Q, Zhu LZ, Zhang T, Lei AW. Org. Lett. 2007; 9: 4571
    • 21g Zou XZ, Qian MX, Hu Q, Negishi E. Angew. Chem. Int. Ed. 2004; 43: 2259
    • 22a Zhang M, Hu Y.-Y, Zhang S.-L. Chem. Eur. J. 2009; 15: 10732
    • 22b Pan J, Zhang M, Zhang S.-L. Org. Biomol. Chem. 2012; 10: 1060
    • 22c Zheng S.-L, Zhang S.-L. RSC Adv. 2016; 6: 26437
    • 23a Zhang Y.-M, Yan T.-L, Cheng W, Zuo J.-M, Zhao W.-J. Tetrahedron Lett. 2009; 50: 2925
    • 23b Zhang Y.-M, Han M.-H, Yan T.-L. Synth. Commun. 2012; 42: 2689
    • 23c Wipf P, Pierce JG. Org. Lett. 2005; 7: 3537
  • 24 Wolan A, Joachimczak A, Budny M, Kozakiewicz A. Tetrahedron Lett. 2011; 52: 1195
    • 25a Heckmann G, Niemeyer M. J. Am. Chem. Soc. 2000; 122: 4227
    • 25b Tammiku-Taul T, Burk P, Tuulmets A. J. Phys. Chem. A. 2004; 108: 133
  • 26 Aliyu AO. C, Salawu OW, Onoja PK. J. Chem. Pharm. Res. 2013; 5: 129
  • 27 Unterhalt B, Eljabour S. Arch. Pharm. 1986; 319: 1146
  • 28 Dubost E, Fossey C, Cailly T, Rault S, Fabis F. J. Org. Chem. 2011; 76: 6414
  • 29 Kawamorita S, Miyazaki T, Ohmiya H, Iwai T, Sawamura M. J. Am. Chem. Soc. 2011; 133: 19310
  • 30 Pramanik S, Reddy RR, Ghorai P. J. Org. Chem. 2015; 80: 3656