Synthesis 2020; 52(05): 755-762
DOI: 10.1055/s-0039-1690754
paper
© Georg Thieme Verlag Stuttgart · New York

Base-Promoted Direct Synthesis of Sulfinates from N-Sulfonyl­hydrazones under Metal-Free Conditions

Yuan-Zhao Ji
a   School of Marine Science and Technology, Harbin Institute of Technology, 2 Wenhuaxi Road, Weihai 264209, P. R. of China
,
Qin-Xi Wu
a   School of Marine Science and Technology, Harbin Institute of Technology, 2 Wenhuaxi Road, Weihai 264209, P. R. of China
,
Hui-Jing Li
a   School of Marine Science and Technology, Harbin Institute of Technology, 2 Wenhuaxi Road, Weihai 264209, P. R. of China
b   Weihai Institute of Marine Biomedical Industrial Technology, Wendeng District, Weihai 264400, P. R. of China   Email: lihuijing@iccas.ac.cn   Email: ycwu@iccas.ac.cn
,
Dong-Hui Luo
a   School of Marine Science and Technology, Harbin Institute of Technology, 2 Wenhuaxi Road, Weihai 264209, P. R. of China
,
Yan-Chao Wu
a   School of Marine Science and Technology, Harbin Institute of Technology, 2 Wenhuaxi Road, Weihai 264209, P. R. of China
b   Weihai Institute of Marine Biomedical Industrial Technology, Wendeng District, Weihai 264400, P. R. of China   Email: lihuijing@iccas.ac.cn   Email: ycwu@iccas.ac.cn
› Author Affiliations
This work was supported by the Key Technology Research and Development Program of Shandong (2019GSF108089), the Natural Science Foundation of Shandong Province (ZR2019MB009), the National Natural Science Foundation of China (21372054, 21672046), and the fund from the Huancui District of Weihai City.
Further Information

Publication History

Received: 28 September 2019

Accepted after revision: 08 November 2019

Publication Date:
20 November 2019 (online)


Abstract

A base-promoted direct synthesis of sulfinates from N-sulfonylhydrazones is described. Various N-sulfonylhydrazones, derived from aldehydes and ketones, are converted into the corresponding sulfinates in moderate to good yields. This protocol possesses many advantages such as readily available and stable starting materials, broad substrate scope, and metal-free reaction conditions.

Supporting Information

 
  • References

    • 1a Tapia-Pineda A, Perez-Arrieta C, Silva-Cuevas C, Paleo E, Lujan-Montelongo JA. J. Chem. Educ. 2016; 93: 1470
    • 1b Robak MT, Herbage MA, Ellman JA. Chem. Rev. 2010; 110: 3600
    • 1c Fernández I, Khiar N. Chem. Rev. 2003; 103: 3651
  • 2 Kim JH, Lee JO, Lee SK, Moon JW, You GY, Kim SJ, Park SH, Park JM, Lim SY, Suh PG, Uhm KO, Song MS, Kim HS. J. Biol. Chem. 2011; 286: 7567
  • 3 Blackinton J, Lakshminarasimhan M, Thomas KJ, Ahmad R, Greggio E, Raza AS, Cookson MR, Wilson MA. J. Biol. Chem. 2011; 284: 6476
  • 4 Hemmi M, Ikeda Y, Shindo Y, Nakajima T, Nishiyama S, Oka K, Sato M, Hiruta Y, Citterio D, Suzuki K. Chem. Asian J. 2018; 13: 648
    • 5a Liu M, Liu Y, Liu A, Zhang D, Chen M, Wu C, Hua X, Zhou S, Li Z. Chin. J. Org. Chem. 2016; 36: 1653
    • 5b Li HJ, Wang R, Gao J, Wang YY, Luo DH, Wu YC. Adv. Synth. Catal. 2015; 357: 1393
    • 6a Nguyen NL. T, Vo HT, Duus F, Luu TX. T. Molecules 2017; 22: 1458
    • 6b Wei L, Xiao M, Xie Z. Org. Lett. 2014; 16: 2784
    • 6c Rayner PJ, Gelardi G, O’Brien P, Horan RA. J, Blakemore DC. Org. Biomol. Chem. 2014; 12: 3499
    • 6d Nath D, Fleming FF. Chem. Eur. J. 2013; 19: 2023
    • 6e Yuste F, Linares AH, Mastranzo VM, Ortiz B, Sánchez-Obregón R, Fraile A, Ruano JL. G. J. Org. Chem. 2011; 76: 4635
    • 6f Resek JE, Meyers AI. Tetrahedron Lett. 1995; 36: 7051
    • 7a Dherbassy Q, Djukic JP, Wencel-Delord J, Colobert F. Angew. Chem. Int. Ed. 2018; 57: 4668
    • 7b Chelouan A, Recio R, Alcudia A, Khiar N, Fernández I. Eur. J. Org. Chem. 2014; 6935
    • 7c Trost BM, Rao M, Dieskau AP. J. Am. Chem. Soc. 2013; 135: 18697
    • 7d Rayner PJ, O’Brien P, Horan RA. J. J. Am. Chem. Soc. 2013; 135: 8071
    • 7e Worch C, Atodiresei I, Raabe G, Bolm C. Chem. Eur. J. 2010; 16: 677
    • 7f Bürgi JJ, Mariz R, Gatti M, Drinkel E, Luan X, Blumentritt S, Linden A, Dorta R. Angew. Chem. Int. Ed. 2009; 48: 2768
    • 7g Khiar N, Alcudia F, Espartero JL, Rodríguez L, Fernández I. J. Am. Chem. Soc. 2000; 122: 7598
    • 8a Bujnicki B, Drabowicz J, Mikolajczyk M. Molecules 2015; 20: 2949
    • 8b Maldonado MF, Sehgelmeble F, Bjarnemark F, Svensson M, Åhman J, Arvidsson PI. Tetrahedron 2012; 68: 7456
    • 8c Ruano JL. G, Parra A, Marzo L, Yuste F, Mastranzo VM. Tetrahedron 2011; 67: 2905
    • 8d Ruano JL. G, Parra A, Yuste F, Mastranzo VM. Synthesis 2008; 311
    • 8e Han Z, Krishnamurthy D, Grover P, Fang QK, Su X, Wilkinson HS, Lu ZH, Magierab D, Senanayake CH. Tetrahedron 2005; 61: 6386
    • 8f Han Z, Krishnamurthy D, Grover P, Fang QK, Senanayake CH. J. Am. Chem. Soc. 2002; 124: 7880
    • 8g Davis FA, Zhang Y, Andemichael Y, Fang T, Fanelli DL, Zhang H. J. Org. Chem. 1999; 64: 1403
    • 8h Evans DA, Faul MM, Colombo L, Bisaha JJ, Clardy J, Cherry D. J. Am. Chem. Soc. 1992; 114: 5977
    • 9a Tata RR, Hampton CS, Harmata M. Adv. Synth. Catal. 2017; 359: 1232
    • 9b Lujan-Montelongo JA, Estevez AO, Fleming FF. Eur. J. Org. Chem. 2015; 1602
  • 10 Yang X, Bao Y, Dai Z, Zhou Q, Yang F. Green Chem. 2018; 20: 3727
  • 11 Peltier HM, Evans JW, Ellman JA. Org. Lett. 2005; 7: 1733
    • 12a Gafur SH, Waggoner SL, Jacobsen E, Hamaker CG, Hitchcock SR. Synthesis 2018; 50: 4855
    • 12b Drabowicz J, Kwiatkowska M, Kiełbasiński P. Synthesis 2008; 3563
    • 12c Hajipour AR, Falahatib AR, Ruoho AE. Tetrahedron Lett. 2006; 47: 2717
    • 12d Hajipour AR, Mallakpour SE, Afrousheh A. Tetrahedron 1999; 55: 2311
    • 12e Noguchi Y, Isoda M, Kuroki K, Furukawa M. Chem. Pharm. Bull. 1982; 30: 1646
    • 12f Furukawa M, Ohkawara T, Noguchi Y, Nishikawa M, Tommatsu M. Chem. Pharm. Bull. 1980; 28: 134
    • 13a Ji YZ, Li HJ, Zhang JY, Wu YC. Eur. J. Org. Chem. 2019; 1846
    • 13b Tranquilino A, Andrade SR. C. P, da Silva AP. M, Menezes PH, Oliveira RA. Tetrahedron Lett. 2017; 58: 1265
    • 13c Jacobsen E, Chavda MK, Zikpi KM, Waggoner SL, Passini DJ, Wolfe JA, Larson R, Beckley C, Hamaker CG, Hitchcock SR. Tetrahedron Lett. 2017; 58: 3073
    • 13d Huang M, Hu L, Shen H, Liu Q, Hussain MI, Pana J, Xiong Y. Green Chem. 2016; 18: 1874
  • 14 Watanabe Y, Mase N, Tateyama M, Toru T. Tetrahedron: Asymmetry 1999; 10: 737
  • 15 Du B, Li Z, Qian P, Han J, Pan Y. Chem. Asian J. 2016; 11: 478
    • 16a Zhou C, Tan Z, Jiang H, Zhang M. Green Chem. 2018; 20: 1992
    • 16b Shyam PK, Kim YK, Lee C, Jang HY. Adv. Synth. Catal. 2016; 358: 56
    • 18a Pogaku N, Krishna PR, Prapurna YL. Synth. Commun. 2017; 47: 1239
    • 18b Kadari L, Krishna PR, Prapurna YL. Adv. Synth. Catal. 2016; 358: 3863
    • 18c Ji YZ, Wang M, Li HJ, Liu Y, Wu YC. Eur. J. Org. Chem. 2016; 4077
    • 19a Du B, Wang W, Wang Y, Qi Z, Tian J, Zhou J, Wang X, Han J, Ma J, Pan Y. Chem. Asian J. 2018; 13: 404
    • 19b Wei J, Sun Z. Org. Lett. 2015; 17: 5396
    • 20a Arunprasath D, Bala BD, Sekar G. Adv. Synth. Catal. 2019; 361: 1172
    • 20b Wang H, Deng YH, Shao Z. Synthesis 2018; 50: 2281
    • 20c Hossain ML, Wang J. Chem. Rec. 2018; 18: 1548
    • 20d Xia Y, Qiu D, Wang J. Chem. Rev. 2017; 117: 13810
    • 20e Qiu D, Mo F, Zhang Y, Wang J. Adv. Organomet. Chem. 2017; 67: 151
    • 20f Jadhav AP, Ray D, Rao VU. B, Singh RP. Eur. J. Org. Chem. 2016; 2369
    • 20g Xu K, Shen C, Shan S. Chin. J. Org. Chem. 2015; 35: 294
    • 20h Xiao Q, Zhang Y, Wang J. Acc. Chem. Res. 2013; 46: 236
    • 20i Zhang Y, Wang J. Top. Curr. Chem. 2012; 327: 239
    • 20j Shao Z, Zhang H. Chem. Soc. Rev. 2012; 41: 560
    • 20k Barluenga J, Valdés C. Angew. Chem. Int. Ed. 2011; 50: 7486
    • 21a Zhao JL, Guo SH, Qiu J, Gou XF, Hua CW, Chen B. Tetrahedron Lett. 2016; 57: 2375
    • 21b Barluenga J, Tomás-Gamasa M, Aznar F, Valdés C. Eur. J. Org. Chem. 2011; 1520
    • 21c Feng XW, Wang J, Zhang J, Yang J, Wang N, Yu XQ. Org. Lett. 2010; 12: 4408
    • 21d Zhang JL, Chan PW. H, Che CM. Tetrahedron Lett. 2003; 44: 8733
  • 22 Choudhary D, Khatri V, Basak AK. Org. Lett. 2018; 20: 1703
    • 24a Sha Q, Wei Y. Tetrahedron 2013; 69: 3829
    • 24b Liu JB, Yan H, Lu G. Tetrahedron Lett. 2013; 54: 891