Synthesis 2020; 52(06): 928-932
DOI: 10.1055/s-0039-1690809
paper
© Georg Thieme Verlag Stuttgart · New York

Iodobenzene-Catalyzed Oxidative Cyclization for the Synthesis of Highly Functionalized Cyclopropanes

Yang Li
,
Hao Guo
,
Renhua Fan
Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. of China   eMail: rhfan@fudan.edu.cn
› Institutsangaben
Financial support from the National Natural Science Foundation of China (21572033) and the Science and Technology Commission of Shanghai Municipality (19ZR1403400) is greatly appreciated.
Weitere Informationen

Publikationsverlauf

Received: 22. Dezember 2019

Accepted after revision: 09. Januar 2020

Publikationsdatum:
29. Januar 2020 (online)


Abstract

An iodobenzene-catalyzed oxidative cyclization of Michael adducts of activated methylene compounds with nitroolefins or chalcones is developed. mCPBA is used as oxidant together with Bu4NI for the generation of a highly reactive iodine(III) species to mediate the cyclopropanation via a ligand exchange and reductive elimination process. A range of highly functionalized cyclopropanes are synthesized with high diastereoselectivities.

Supporting Information

 
  • References

    • 1a Patai S, Rappoport Z. The Chemistry of the Cyclopropyl Group . Wiley; New York: 1987
    • 1b Davies HM. L. Tetrahedron 1993; 49: 5203
    • 1c Doyle MP, Forbes DC. Chem. Rev. 1998; 98: 911
    • 1d Salaün J. Top. Curr. Chem. 2000; 207: 1
    • 1e Faust R. Angew. Chem. Int. Ed. 2001; 40: 2251
    • 1f Ebner C, Carreira EM. Chem. Rev. 2017; 117: 11651
    • 1g Wu W, Lin Z, Jiang H. Org. Biomol. Chem. 2018; 16: 7315
    • 2a Goldschmidt Z, Crammer B. Chem. Soc. Rev. 1988; 17: 229
    • 2b Wong HN. C, Hon M.-Y, Tse C.-W, Yip Y.-C, Tanko J, Hudlicky T. Chem. Rev. 1989; 89: 165
    • 2c Piers E. In Comprehensive Organic Synthesis, Vol. 5. Trost BM. Pergamon Press; Oxford: 1991: 971
    • 2d Hudlicky T, Fan R, Reed J, Gadamasetti KG. Org. React. 1992; 41: 1
    • 2e Davies HM. L. Tetrahedron 1993; 49: 5203
    • 2f Nonhebel DC. Chem. Soc. Rev. 1993; 22: 347
    • 2g Gothelf KV, Jørgensen KA. Chem. Rev. 1998; 98: 863
    • 2h Liu J, Liu R, Wei Y, Shi M. Trends Chem. 2019; 1: 779
    • 3a Li AH, Dai LX, Aggarwal VK. Chem. Rev. 1997; 97: 2341
    • 3b Salaün J. Chem. Rev. 1989; 89: 1247
    • 3c Padwa A, Krumpe KE. Tetrahedron 1992; 48: 5385
    • 3d Lautens M, Klute W, Tam W. Chem. Rev. 1996; 96: 49
    • 3e Doyle MP. In Catalytic Asymmetric Synthesis . Ojima I. VCH; Weinheim: 1993: 63
    • 3f Aggarwal VK, Alsono E, Fang G, Ferrara M, Hynd G, Porcelloni M. Angew. Chem. Int. Ed. 2001; 40: 1433
    • 3g Davies HM. L, Antoulinakis E. Org. React. 2001; 57: 1
    • 3h Lebel H, Marcoux J.-F, Molinaro C, Charette AB. Chem. Rev. 2003; 103: 977
    • 3i Pietruszka J. Chem. Rev. 2003; 103: 1051
    • 3j Gnad G, Reiser O. Chem. Rev. 2003; 103: 1603
    • 3k Wessjohann LA, Brandt W, Thiemann T. Chem. Rev. 2003; 103: 1625
    • 3l Roy A, Goswami SP, Sarkar A. Synth. Commun. 2018; 48: 2003
  • 4 Tang M.-C, Zou Y, Watanabe K, Walsh CT, Tang Y. Chem. Rev. 2017; 117: 5226
    • 5a Fan R, Ye Y. Adv. Synth. Catal. 2008; 350: 1526
    • 5b Fan R, Ye Y, Li W, Wang L. Adv. Synth. Catal. 2008; 350: 2488
    • 5c Ye Y, Zheng C, Fan R. Org. Lett. 2009; 11: 3156
    • 5d Ye Y, Wang H, Fan R. Org. Lett. 2010; 12: 2802
    • 5e Ye Y, Wang L, Fan R. J. Org. Chem. 2010; 75: 1760
  • 6 Fuchigami T, Fujita T. J. Org. Chem. 1994; 59: 7190
  • 7 Ochiai M, Takeuchi Y, Katayama T, Sueda T, Miyamoto K. J. Am. Chem. Soc. 2005; 127: 12244
    • 8a Zhong W, Liu S, Yang J, Meng X, Li Z. Org. Lett. 2012; 14: 3336
    • 8b Miyamoto K, Sei Y, Yamaguchi K, Ochiai M. J. Am. Chem. Soc. 2009; 131: 1382
    • 8c Alhalib A, Kamouka S, Moran WJ. Org. Lett. 2015; 17: 1453
    • 8d Braddock DC, Cansell G, Hermitage SA. Chem. Commun. 2006; 2483
    • 8e Chen C, You M, Chen H. Synth. Commun. 2016; 46: 73
    • 8f Rodriguez A, Moran WJ. Org. Lett. 2011; 13: 2220
    • 9a Jain N, Xu S, Ciufolini MA. Chem. Eur. J. 2017; 23: 4542
    • 9b Uyanik M, Akakura M, Ishihara K. J. Am. Chem. Soc. 2009; 131: 251
    • 10a Wang M, Chen S, Jiang X. Chem. Asian J. 2018; 13: 2195
    • 10b Dohi T, Takenaga N, Nakae T, Toyoda Y, Yamasaki M, Shiro M, Fujioka H, Maruyama A, Kita Y. J. Am. Chem. Soc. 2013; 135: 4558
    • 10c Dohi T, Maruyama A, Takenaga N, Senami K, Minamitsuji Y, Fujioka H, Caemmerer SB, Kita Y. Angew. Chem. Int. Ed. 2008; 47: 3787
    • 10d Dohi T, Maruyama A, Yoshimura M, Morimoto K, Tohma H, Kita Y. Angew. Chem. Int. Ed. 2005; 44: 6193
    • 10e Quideau S, Lyvinec G, Marguerit M, Bathany K, Ozanne-Beaudenon A, Buffeteau T, Cavagnat D, Chenede A. Angew. Chem. Int. Ed. 2009; 48: 4605
    • 10f Uyanik M, Yasui T, Ishihara K. Angew. Chem. Int. Ed. 2013; 52: 9215
    • 10g Uyanik M, Yasui T, Ishihara K. Angew. Chem. Int. Ed. 2010; 49: 2175
    • 10h Uyanik M, Yasui T, Ishihara K. Tetrahedron 2010; 66: 5841
    • 10i Boppisetti JK, Birman VB. Org. Lett. 2009; 11: 1221
  • 11 McCooey SH, McCabe T, Connon SJ. J. Org. Chem. 2006; 71: 7494
  • 12 Le Menn JC, Tallec AS, Sarrazin J. Can. J. Chem. 1991; 69: 761
  • 13 Villemin D, Thibault-Strarzyk F, Hachemi M. Synth. Commun. 1994; 24: 1425